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Diéz, my second supervisor. Without him I wouldn’t have discovered the

stimulating atmosphere of the LOGOS group. Moreover, his extreme clarity

in commenting various parts of this dissertation have significantly improved

my work. Especially during the last months, I have profited from his advices
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7.1 Hénon-Heiles systems . . . . . . . . . . . . . . . . . . . . . . . 325

7.2 Testing the accounts . . . . . . . . . . . . . . . . . . . . . . . 331

7.3 The moral: the importance of qualitative factors . . . . . . . . 346

8 A new approach to MEPP in terms of intellectual tools and

conceptual resources 351

8.1 De Regt and Dieks on scientific understanding: conceptual tools353

8.2 Intellectual tools and conceptual resources . . . . . . . . . . . 357

8.2.1 Intellectual tools . . . . . . . . . . . . . . . . . . . . . 359

8.2.2 Conceptual resources . . . . . . . . . . . . . . . . . . . 364

8.3 Intellectual tools and conceptual resources at work . . . . . . . 371

8.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

8.4.1 Batterman . . . . . . . . . . . . . . . . . . . . . . . . . 374

8.4.2 Pincock . . . . . . . . . . . . . . . . . . . . . . . . . . 378

8.4.3 Kitcher . . . . . . . . . . . . . . . . . . . . . . . . . . 382

8.4.4 Steiner . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

8.4.5 Generalization: strategy . . . . . . . . . . . . . . . . . 394

8.5 Payoff, directions of analysis . . . . . . . . . . . . . . . . . . . 395

8.5.1 Asymmetry problem revisited . . . . . . . . . . . . . . 396

8.5.2 My approach and the Enhanced Indispensability Ar-

gument . . . . . . . . . . . . . . . . . . . . . . . . . . 403

8.6 Three big questions for my approach . . . . . . . . . . . . . . 412

8.6.1 Understanding and explanation (α) . . . . . . . . . . . 413

8.6.2 Abilities to reason (β) . . . . . . . . . . . . . . . . . . 424

iii



8.6.3 Mutual interactions between conceptual resources and

intellectual tools (γ) . . . . . . . . . . . . . . . . . . . 427

8.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 430

Bibliography 433

iv



Introduction

Scientific explanation

The problem of capturing the notion of explanation in science has a long

history that I will not try to reconstruct here. Rather, I will start this disser-

tation by showing that the urgence to have a valuable notion of explanation

can be traced back to ancient philosophy.

As David Hillel Ruben has remarked, Plato’s theory of forms can be read

as an extended discussion of the requirements for explanation [Ruben, 1990,

p. 45]. On the other hand, it is in Aristotle that we have what might be

considered as the first account of explanation in science. For Aristotle, scien-

tific knowledge is knowledge of the cause [Aristotle, BWA 1941, p. 111, Post.

An. I.1, 71b 5-10], where ‘cause’ (aitia) is intended in the sense of his four

causes (formal, material, efficient and final)1. As observed by Paolo Man-

cosu, modern translators and commentators of Aristotle prefer to translate

the term “aitia” as “explanation”, so that “the so called doctrine of the four

causes becomes an account of the kinds of explanations that can be used to

answer a why-question” [Mancosu, 2000, p. 108]2.

Knowledge, according to Aristotle, is obtained through demonstration.

1The account of the four causes (formal, material, efficient and final) is expressed in
his Physics (II.3) and Metaphysics (V.2).

2Among the commentators who translate ‘aitia’ with ’explanation’ we find Barnes,
Moravcsik, Hocutt, Annas. For instance, Barnes translates from Posterior Analytics I.1:
“We think we understand a thing simpliciter (and not in the sophistic fashion acciden-
tally) whenever we think we are aware both that the explanation [aitia] because of which
the object is its explanation [aitia], and that it is not possible for this to be otherwise”
[Aristotle, CWA 1984, p. 115, Post. An. I.1, 71b 5-10].
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Nevertheless, only scientific demonstrations are suitable candidates for estab-

lish scientific knowledge. There are some necessary conditions for those kinds

of demonstrations being scientific: first, the premises of the syllogism must

be true; second and third, they have to be primitive and immediate; fourth,

they have to be better known than the conclusion and prior to the conclusion,

which is further related to them as effect to causes [Aristotle, BWA 1941, p.

112, Post. An. I.1, 71b 20-25]. In addition to this, in Posterior Analytics

I.13 Aristotle distinguishes between “demonstrations of the fact” (oti proofs)

and demonstrations “of the reasoned fact” (dioti proofs). Altough they are

both valid, only from the latter we get the required conviction that the result

is true plus the convinction of why it is true. In fact, while demonstrations of

the fact proceed from effects to their causes, demonstrations of the reasoned

fact permit us to grasp the causal structure of the phenomena under investi-

gation going from causes (the explanantia) to the effects (the explananda)3.

Demonstrations of the reasoned fact represent then, for Aristotle, the kind

of reasoning which “met en oeuvre la cause” and which produces scientific

knowledge. We can call them“explanatory demonstrations”, whereas demon-

stration of the fact are considered as “non-explanatory”.

Although Aristotle’s deductivist theory of explanation has been extremely

influential, especially until the Reinaissance and the seventeenth century

[Mancosu, 1996], the first attempt to break with that tradition by provid-

ing a fresh perspective on scientific explanation is very recent and is found

in Carl Hempel and Paul Oppenheim’s paper “Studies in the Logic of Ex-

planation” [Hempel et al., 1948]. In this paper, which is now considered one

of the most influential studies of the XXth philosophical literature, the au-

thors proposed to capture the notion of scientific explanation by offering their

deductive-nomological model (D-N model).

Hempel and Oppenheim’s paper was regarded as a very promising per-

spective to the study of the notion of scientific explanation. However, the dif-

ficulty the D-N model had in solving problems like the so called “asymmetry-

3Note that, in this context, ‘cause’ means any of the four Aristotelian causes: formal,
material, efficient, and final.
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problem” and the “problem of explanatory irrelevances”, which undermined

the claim that the D-N model provides sufficient conditions for scientific

explanation, soon led some authors to suggest some amendments to the

model, or even to develop models of explanation which were based on a

different picture of explanation. Among the latter models, the unification

models proposed by Michael Friedman [Friedman, 1974] and Philip Kitcher

[Kitcher, 1976], the pragmatic approach to explanation put forward by Bas

Van Fraassen [Van Fraassen, 1980] and the causal models of scientific expla-

nation such as that proposed by Wesley Salmon [Salmon, 1984a] seemed to

offer themselves as thought-provoking alternatives to the Hempelian frame-

work4.

After the end of the 80’s the debate on scientific explanation was far

from its conclusion. Various models (for the most part refined versions of

the major models which were available yet) were proposed, and the notion of

scientific explanation became a central topic to be addressed in philosophy

of science. This interest is very well mirrored by the role that the notion

of explanation played, and continues to play, in the ontological debate be-

tween realist and anti-realists, a role which mainly concerns the so called

‘IBE’ (Inference to the Best Explanation) and Indispensability Arguments,

in the discussion concerning the use of models and idealization in science

[Morgan et al., 1999a], and in the debate about the notion of ‘understand-

ing’ in science [De Regt, 2009]. Furthermore, scientific explanation has been

addressed from very distinct perspectives. For instance, two recent papers

by Colin McGinn and Tian Yu Cao provide good examples of how this topic

could be approached from the philosophy of mind or from an ‘ontological’

perspective ([McGinn, 2004] and [Cao, 2004]).

4I will consider some of these ‘classical’ models, emerged between the 70’s and the 90’s,
in part I of this dissertation. Perhaps, the best way to grasp the importance that the
notion of scientific explanation assumed among philosophers and philosophies of science
during the four decades which go from 1948 to 1988, is to have a look at the huge volume
XIII of the Minnesota Studies in the Philosophy of Science [Kitcher et al., 1989]. This
volume, which is consecrated to the subject of scientific explanation, provides a very
detailed compendium of the different approaches to scientific explanation proposed during
these forty years.
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However, as the analysis of the notion of scientific explanation was going

on, some philosophers realized that this notion was very general, and that

perhaps a further distinction had to be introduced to account for cases where

mathematical claims came in as an essential ingredient in the explanation pro-

vided. These latter cases correspond to cases of mathematical explanation.

As clearly expressed by Paolo Mancosu in one of his studies on explanation,

we can have two different senses of mathematical explanation:

In the first sense ‘mathematical explanation’ refers to explanations in

the natural or social sciences where various mathematical facts play

an essential role in the explanation provided. The second sense is that

of explanation within mathematics itself [Mancosu, 2008b, p. 134]

Mathematical explanation in science

In this dissertation I will consider some classical models of explanation,

but the central issue will not be to focus on scientific explanation in gen-

eral, neither on explanations within mathematics itself (formal and informal

proofs within mathematics)5. I will turn my attention to situations in the

natural sciences where mathematics is supposed to play an essential role

in the explanation provided6. I will call such explanations, i.e. explana-

tions of physical phenomena where mathematics is supposed to provide such

an essential ingredient, ‘mathematical explanations of physical phenomena’

(henceforth ‘MEPP’). MEPP clearly correspond to the first sense of mathe-

matical explanation indicated by Paolo Mancosu (quotation above).

As an illustration of how mathematics might be thought to be offering

explanations of physical phenomena, consider the following case. The ex-

5The topic of mathematical explanation within mathematics has received a particular
attention in the recent philosophical debate. A survey of the relevant literature is provided
in [Mancosu, 2008c].

6However, where necessary to my discussion, I will consider the topic of mathematical
explanation within mathematics. For instance, this will be the case of Mark Steiner’s
account of mathematical explanation in physics, which relies on his account of explanation
in mathematics and which will be presented in chapter 1.

4



ample concerns a biological phenomenon and is given by Aidan Lyon and

Mark Colyvan in their article “The Explanatory Power of Phase Spaces”

[Lyon et al., 2008]. Hive-bee honeycombs always have an hexagonal struc-

ture. We want an explanation for this, namely we want to know why the

honeycomb is always divided up into hexagons and not some other polygon

(such as triangles or squares), or any combination of different (concave or

convex) polygons. Now, as maintained by the biologists, hive-bees minimise

the amount of wax they use to build their combs, since there is an evolution-

ary advantage in doing so. Nevertheless this gives only a partial answer to

our original question ‘Why is the hive-bee honeycomb always divided up into

hexagons (instead of some other polygons or some combination thereof)?’.

To fill this gap and answer our question we turn to mathematics and we

appeal to a theorem proved in 1999 by Thomas C. Hales [Hales, 2001]. The

theorem, called the ‘honeycomb theorem’, states that an hexagonal grid rep-

resents the best way to divide a surface into regions of equal area with the

least total perimeter. This mathematical result, together with the biologi-

cal remark, is regarded by Lyon and Colyvan as offering an explanation of

the physical phenomenon, and this explanation would provide an example of

MEPP (the explanation of the biological fact seems to depend essentially on

a mathematical fact). They write:

So the honeycomb conjecture (now the honeycomb theorem), coupled

with the evolutionary part of the explanation, explains why the hive-

bee divides the honeycomb up into hexagons rather than some other

shape, and it is arguably our best explanation for this phenomenon.

[Lyon et al., 2008, p. 3]

Another simple example of MEPP has been offered by Peter Lipton:

There also appear to be physical explanations that are non-causal.

Suppose that a bunch of sticks are thrown into the air with a lot of

spin so that they twirl and tumble as they fall. We freeze the scene as

the sticks are in free fall and find that appreciably more of them are

near the horizontal than near the vertical orientation. Why is this?

5



The reason is that there are more ways for a stick to be the horizontal

than near the vertical. To see this, consider a single stick with a fixed

midpoint position. There are many ways this stick could be horizontal

(spin it around in the horizontal plane), but only two ways it could

be vertical (up or down). This asymmetry remains for positions near

horizontal and vertical, as you can see if you think about the full shell

traced out by the stick as it takes all possible orientations. This is a

beautiful explanation for the physical distribution of the sticks, but

what is doing the explaining are broadly geometrical facts that cannot

be causes [Lipton, 2004, p. 9-10]

As Lipton observes, this explanation is not causal and it is carried out

by essential appeal to mathematical (in this case geometrical) facts. This

is a crucial point, because MEPP seem to be counterexamples to the claim

that all explanations in the natural science must be causal. For instance,

in the case of the explanation of why hive-bee honeycombs always have an

hexagonal structure, we do not trace the causal processes and the interac-

tions leading up to an event, but we appeal to a geometrical theorem.

Scientific explanations, of course, make use of mathematics. Furthermore,

spheres of mathematical practice and scientific practice frequently overlap.

However, there is difference between an explanation in science which is per-

formed by essential appeal to a mathematical fact, such as that concerning

the structure of the hive-bee honeycombs, and an explanation which involves

the application of mathematics but which does not appeal to mathematics

in this essential way (for instance, Newton’s explanation for the motion of

planets in terms of action at a distance). Unfortunately, the dividing line

between MEPP and scientific explanation is not so sharp, and there are sit-

uations where it is not easy to separate the empirical part of the explanation

from the mathematical part. For instance, if we pass to physics, given the

highly mathematized nature of the subject, it becomes difficult to distinguish

between the mathematical and the physical components of an explanation.

Even in these cases, however, there are situations where mathematics is sup-

posed to play an explanatory (and not purely justificatory) role. As will see in

6



part II of this dissertation, in these situations mathematics plays an explana-

tory role not through a theorem, as in the hive-bee honeycombs example, but

through its internal resources (for instance, operations or structures) which

are involved in the process of application of mathematics to the natural sci-

ences.

But does mathematics play this explanatory role in science? The answer,

at least for what a number of philosophers suggest, seems to be a positive one.

For instance, the following philosophers think mathematics does play such a

role in science: Mark Steiner [Steiner, 1978b], Mark Colyvan [Colyvan, 2001],

Robert Batterman [Batterman, 2002a], Alan Baker [Baker, 2005], Mary Leng

[Leng, 2005], Aidan Lyon and Mark Colyvan [Lyon et al., 2008], Sorin Bangu

[Bangu, 2008], Paolo Mancosu [Mancosu, 2008b]. However, it should be

noted that there is no general consensus on this point and other philoso-

phers reject the claim that mathematics plays an explanatory role in science.

For instance, Joseph Melia, Chris Daly and Simon Langford claim that the

role of mathematics is one of “indexing” physical facts, not explaining them

([Melia, 2000]; [Daly et al., 2009]), while Juha Saatsi defends the idea that

mathematics does not play any ‘genuine’ explanatory role but only a repre-

sentational one [Saatsi, 2011].

Although MEPP per se have been subject to an intensive investigation

only during the recent years, the attention to this topic (as for the study of

scientific explanation) can be traced back to the Greeks [Mancosu, 2008b, p.

134]. For instance, the physics of Aristotle was not mathematized but Aristo-

tle discussed extensively the so-called mixed sciences (optics, harmonics, and

mechanics), characterizing them as the more physical of the mathematical

sciences (Posterior Analytics I.13). Every mixed science was subordinated to

an area of pure mathematics (for instance, harmonics to arithmetic and optics

to geometry). According to the Greek philosopher, explanatory demonstra-

tions are to be found in the mathematical sciences and therefore he welcomed

the idea that there are mathematical explanations of physical phenomena:

For here it is for the empirical scientist to know the fact and for the
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mathematical to know the reason why; for the latter have the demon-

strations of the explanations, and often they do not know the fact,

just as those who consider the universal often do not know some of

the particulars through lack of observation [Aristotle, CWA 1984, p.

128 (Vol I), Post. An. I.13, 79a 1-7]

However, as the domain of applied mathematics grew, the topic of whether

mathematics could give explanations of natural phenomena was one on which

there was disagreement. The Aristotelian conception of pure mathematics,

as abstracting from matter and motion, was evidently difficult to reconcile

with the fact that both physics (natural philosophy) and the mixed sciences

are all conversant about natural phenomena and thus dependent on matter

and motion. For instance, the so-called Quaestio de Certitudine Mathemati-

carum, an important debate which took place in the Renaissance, focused

in large part on whether mathematics could play the explanatory role as-

signed to it by Aristotle. By adducing the argument that mathematics lacks

causality, some argued that it cannot play any explanatory role in natural

philosophy7.

As it is natural to think, a real turning point in the use of the notion

of explanation in science was marked by the apparition of Newton’s Prin-

cipia, where for the first time natural philosophy was subject to a process

of ‘mathematization’8. In his 2001 paper, Yves Gingras has underlined how

the “disparition of substances into the acid of mathematics” and the shift in

the criteria for explanation are an ontological and an epistemic effect of the

process of mathematization started with Newton [Gingras, 2001]. Newton’s

mathematization which appears in the Principia, by preferring an abstract

treatment of phenomena, accelerated the disparition of substances like carte-

7On the Quaestio de Certitudine Mathematicarum and the main issues raised by this
debate see chapter 1 of [Mancosu, 1996].

8Here mathematization is intended in the following sense: “we should speak of mathe-
matisation only when the object of this science becomes a mathematical object, i.e. math-
ematics provides a model or a scheme of a natural or social phenomenon and this model
or scheme becomes the real object of studying” [Panza, 2002, p. 253-254]. According to
this definition, Galileo’s law of free fall does not represent a case of mathematization.
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sian vortex or luminiferous ether into the mathematical machinery. Moreover,

the epistemic effect consists in the fact that the use of mathematics in dy-

namics (as distinct from the use in kinematics) changed the use of the term

‘explanation’ with respect to the use which had been made by the philoso-

phers during the 17th century. The case of gravitation shows how the criteria

for explanation have shifted from the previous mechanical explanation to an

explanation which was legitimated in using mathematics as language. During

the 17th century, to ‘explain’ a phenomenon stood for ‘to offer the physical

mechanism which is at the base of his production’. This is why Descartes

rejected Galileo’s explanation of the free fall, claiming that it was not based

on a mechanical explanation. However, with the publication of the Principia

we have the beginning of a shift in the criteria for explanation: “the math-

ematical explanation begins to be preferable to the mechanical explanation

when the latter did not conform to calculations” [Gingras, 2001, p. 398].

Now, even if we recognize that the use of the term ‘explanation’ has

changed in scientific practice and that mathematics has been regarded by

some philosophers as playing an explanatory role in science, we are still con-

fronted with the problem of offering a notion, or even a characterization, of

MEPP.

The recent exigence of developing specific theories of MEPP is due mainly

to the difficulty in accounting for mathematical explanation of physical facts

starting from general theories of scientific explanation. In fact, it is often

observed that the leading contemporary theories of scientific explanation

are in trouble when faced with MEPP ([Batterman, 2002a], [Baker, 2005],

[Mancosu, 2008b]). In some cases these theories left apart mathematical ex-

planations and they did not accept pure mathematical statements within

their structure. This is the case of Hempel’s D-N model, in which the ex-

planans must have empirical content (it must capable, at least in principle,

of being tested by means of experiments and observations). In other cases

these accounts have been regarded as insufficient for the treatment of specific

cases of MEPP. This is what happened, for instance, with Kitcher’s unifica-
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tion model9. Finally, if mathematical objects are acausal, MEPP represent

counterexamples to causal models of scientific explanation, such as Salmon’s,

which consider explanation in the natural sciences as esssentially causal. By

assuming that mathematical objects do not play any essential role in the

explanation provided, causal models miss MEPP simply because they rule

out the possibility of having such a kind of explanations. Of course, all the

previous considerations point to some substantial impediments the major

theories of scientific explanation have when confronted with MEPP. Despite

the great interest in the linkage scientific explanation-MEPP, however, an ex-

tensive discussion of models of scientific explanation in the context of MEPP

has not been offered and work is just beginning [Mancosu, 2008b].

But the attention to the specific topic of mathematical explanations in

mathematics and in science is not only a consequence of the difficulty that

some traditional models of scientific explanation have in capturing the notion

of mathematical explanation. Two main factors contributed to the increased

study of MEPP in the area of philosophy of science, and more particularly

in the context of philosophy of mathematics:

1. The increased interactions between mathematics and natural sciences during

the second half of the XXth century ([Urquhart, 2008a] and [Urquhart, 2008b])

2. The emergence of “new directions” in the philosophy of mathematics which

gave more attention to the mathematical practice ([Aspray et al., 1988] and

[Tymoczko, 1998])

Note that when I am stressing the first point I am not saying that there

were no interactions before (something that would be evidently false), or that

these interactions were not studied. I am just observing that the boundary

between mathematics and natural sciences has become less definite over the

last years, and this process has called for a specific attention to the role

9The fact that Kitcher’s theory cannot account for a particular case of MEPP has
been pointed out by Batterman [Batterman, 2002a, p. 35]. Let me note, however, that
Batterman provides only a general discussion and not a detailed analysis.
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played by mathematics in science. Furthermore, to this process of interac-

tion have corresponded a new interest in the role of empirical procedures in

mathematics itself10.

It is worth observing how John Von Neuman claimed for a injection of

empirism in mathematics as a vital condition for this discipline, when in 1947

wrote:

At a great distance from its empirical source, or after much “abstract”

imbreeding, a mathematical subject is in danger of degeneration. At

the inception the style is usually classical; when it shows signs of

becoming baroque, then the danger signal is up. [...] Whenever this

stage is reached, the only remedy seems to me to be the rejuvenating

return to the source: the reinjection of more or less empirical ideas.

I am convinced that this was a necessary condition to conserve the

freshness and the vitality of the subject and that this will remain

equally true in the future [Von Neumann, 1947, p. 196]

The fact that the interaction between the methodology of physics and

that of mathematics should be considered as beneficial to mathematics was

not only Von Neuman’s opinion. Even Pierre Cartier, who was a member of

the Bourbaki group in the 50’s, has highlighted the positive aspect of this

interaction:

The implicit philosophical belief of the working mathematician today

is the Hilbert Bourbaki formalism. Ideally, one works within a closed

system: basic principles are clearly enunciated once for all, including

(that is an addition of the twentieth century science) the formal rules

of logical reasoning clothed in mathematical form. The basic principles

include precise definitions of all mathematical objects [...] My thesis

is: there is another way of doing mathematics, equally successful, and

the two methods should supplement each other and do not fight. This

other bears various names: symbolic method, operational calculus,

10Perhaps the most well-known icon of this interest is Imre Lakatos’ famous book Proofs
and Refutations [Lakatos, 1976].
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operator theory [...] Euler was the first to use such methods in his

extensive study of infinite series, convergent as well as divergent [...]

But the modern master was R. Feynman who used his diagrams, his

disentangling of operators, his path integrals [...] The method consists

in stretching the formulas to their extreme consequences, resorting to

some internal feeling of coherence and harmony [Cartier, 2000, p. 6].

On the other hand, the discussion of the irruption of methods of physi-

cists into pure mathematics has given birth to a series of controversies, as

for instance that which recently took place on the Bulletin of the American

Mathematical Society. This dispute confronted some theoretical mathemati-

cians, on one side, and on the other mathematicians who pointed to the

dangers of using speculative methods in mathematics [Urquhart, 2008b].

Nevertheless, if “there is another way to do mathematics”, then it is im-

portant for the philosopher of mathematics to consider it and answer the

question ‘How is mathematics done?’. Furthermore, and perhaps more im-

portant for the present study, to a different way of doing mathematics there

corresponds a different way to use mathematics in science. It is then nat-

ural to consider that the interaction between mathematics and science had

strong repercussions not only on the methodology of mathematics, but also

on the philosophical study of topics which are related to that methodology. In

particular, the emergence of a variety of mathematical procedures in physics

offered new material for philosophical thought and opened the way to specific

studies concerning the applicability of mathematics, the structure of math-

ematical explanation in physics, the use of mathematical models in science,

the new methodology of mathematics and the strategies of assimilation be-

tween the two domains [Urquhart, 2008b].

We can say than that the rise of the investigation of the interface between

physics and mathematics is connected to the second factor listed above: the

emergence during the sixties of a strong opposition to the classical foun-

dational programs in philosophy of mathematics (logicism, Hilbert program

and intuitionism). This reaction against the “dogmas of foundationalism”
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[Tymoczko, 1998, p. 95], which started with Imre Lakatos and which has

been pursued by what Aspray and Kitcher defined as “a maverick group of

philosophers” [Aspray et al., 1988], gave a central importance to the history

of mathematics and assumed mathematical practice as a driving force in

the philosophical research11. The research questions posed by those philoso-

phers were thus more oriented on the heuristics of mathematics, the way

in which mathematics grows, the notion of explanation in mathematics, the

distinction between formal and informal proofs and reasonings in mathemat-

ics. For instance, in their History and Philosophy of Modern Mathematics

[Aspray et al., 1988], Aspray and Kitcher write:

Philosophers should pose such questions as: How does mathemati-

cal knowledge grow? What is mathematical progress? What makes

some mathematical ideas (or theories) better than others? What is

mathematical explanation? [Aspray et al., 1988, p. 17]

A similar claim about the importance of scientifc practice in philosophical

investigation comes from the general philosophy of science:

Nowadays few philosophers of science will contest that they should

take account of scientific practice, both past and present. Any general

characteristic of actual scientific activity is in principle relevant to the

philosophical analysis of science [De Regt et al., 2005, p. 139]

The previous considerations about the importance to focus on mathemat-

ical and scientific practice in a philosophical investigation will be essential to

my study. In particular, I will show how the attention to mathematical and

scientific practice is now regarded as a crucial factor to the emergence, the

rejection and the refinement of a philosophical model of MEPP.

11It should be observed that a decisive step toward the possibility of a theoretical analysis
of mathematics in line with natural science came before, from Quine and his refusal of
a distinction between analytic and synthetic. Quine wrote: “Total science, mathematical
and natural and human, is similarly but more extremely undetermined by experience. The
edge of the system must be kept squared with experience; the rest, with all its elaborate
myths or frictions, has as its objective the simplicity of laws. Ontological questions, under
this view, are on a par with questions of natural science” [Quine, 1951, p. 42].
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The outline of this dissertation

The previous paragraphs show how the philosophical interest concerning

the notion of scientific explanation has a long history, and the attention to

this topic has now large ramifications in different areas of philosophy. More-

over, I drew the reader’s attention to the fact that classical models of scientific

explanation have difficulties in accounting for MEPP, and I put forward some

remarks which illustrate how even the investigation of MEPP can be traced

back to the ancients. Only in the recent years philosophers addressed the no-

tion of MEPP with the intention of capture it through a model. This interest,

as I suggested, is the result of various factors and of a renewed consideration

of mathematical and scientific practice. The problem of capturing the notion

of MEPP, however, stands as yet in need of a detailed analysis and there is

no general consensus on the fact that mathematics plays an explanatory role

in science.

It is now time to illustrate the general project of my work. I will present

this by summarizing the contents of the three parts which compose this dis-

sertation.

The traditional tendency toward scientific explanation has been to cap-

ture the nature of explanation by providing a single model, i.e. a model

to which the variety of explanations can be reduced. Call this approach

the winner-take-all approach to explanation (WTA)12. In the first part I

shall present the WTA views on MEPP. I shall take as representative of this

view three major accounts of explanation: Mark Steiner’s account, Bas Van

Fraassen’s pragmatic account and Philip Kitcher’s model of explanation in

12Note that my use of the expression “winner-take-all conception of explanation” is
different from that James Woodward made of it [Woodward, 2003, p. 367]. Woodward
used the same expression to indicate an account of explanation which considers as only
options for a theory or a derivation to be explanatory/unexplanatory. According to him,
such a type of account automatically rules out a less explanatory theory (or derivation)
as unexplanatory and does not leave room for a judgement of more/less explanatoriness
on a continuum. This is the case of Kitcher’s and Friedman’s unification accounts, where
only the more unifying theory (or systematization) is considered as explanatory, and less
unifying theories (or systematizations) are not qualified as providing less explanatoriness
but are marked as nonexplanatory.
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terms of unification. Every model will be discussed in the relative chapter

and, at the end of each chapter, I shall report the major criticisms which

were addressed to each account.

While Mark Steiner has developed an explicit model of mathematical ex-

planation of physical phenomena, which is connected to his theory of math-

ematical explanation of mathematical facts, Van Fraassen’s and Kitcher’s

accounts were built to cover the notion of scientific explanation. However,

these two models have been proposed as good candidates to cover MEPP

as well, and this is why I will include them in my study. In particular, the

discussion of Van Fraassen’s account as a potential model for MEPP will

be based on a paper by Alan Baker [Baker, 2005], in which such an idea is

sketched (i.e. the idea that the pragmatic model can deal with mathematical

explanation in science). In his paper, Baker implicitly suggests an extension

of two traditional models of scientific explanation (the D-N model and the

pragmatic account) as to treat cases in which mathematics is recognized to

provide an essential ingredient in the explanation of a physical phenomenon.

I will thus discuss the possibility of extending the pramatic model to MEPP

and, en passant, I will also present the classical D-N model of explanation

and some classical problems which were not solved by that account. With

respect to Kitcher’s account of explanation as unification, let me note here

that this model has been considered by Kitcher himself as an encompassing

model for explanation in mathematics and empirical science. This makes it

relevant to the topic of MEPP. Furthermore, the choice to offer a detailed

presentation of this account, in chapter 3, is worth for the general strategy

of my dissertation. Although very long, in fact, my presentation of Kitcher’s

account will be instrumental in introducing some characterizations of the

WTA approaches (chapter 4) and in constrasting the WTA approach with

what I will call a ‘pluralist’ approach to MEPP. Finally, in the last part of my

study, the details of Kitcher’s theory will come out as essential to accomplish

two main tasks. First, I will assess this model on a case of MEPP coming

from the scientific practice, thus providing a testing of the unification model
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in the context of MEPP. In order to achieve this task, I will need a compre-

hensive picture of Kitcher’s theory, namely Kitcher’s unification picture of

explanation given in chapter 3. Second, in the last chapter I will propose the

idea that my own approach to MEPP can be generalized, and that its basic

notions might be extended to scientific explanation as well. And, again, I

will turn to some aspects of Kitcher’s model.

The philosophical discussion about MEPP has inherited the same sort of

connection that the topic of scientific explanation had, and continues to have,

with the ontological arena. This is why, in presenting the three WTA models,

I will devote some attention to the role that MEPP play (or are supposed to

play) in the platonist-nominalist debate concerning the so called ‘Enhanced

Indispensability Argument’13.

In the conclusive chapter of this first part, chapter 4, I will propose some

characterizations in order to distinguish between some essential features of

the three models and the ontological view which is associated with each ac-

count.

In the second part I will focus on the pluralist view on MEPP. As the

name itself suggests, the authors who endorse this attitude towards explana-

tion do not welcome the idea that there exists a single model of MEPP and

consider that MEPP are heterogeneous. In other words, a pluralist considers

that what makes something a good explanation can vary from case to case

and that we cannot design a single model able to capture all these instances

of MEPP14. As representative of this pluralist attitude toward MEPP I shall

13The Enhanced Indispensability Argument (EIA) belongs to the terrain of the onto-
logical debate in philosophy of mathematics. The realist-partisans of the EIA refer to the
indispensable explanatory power of mathematics in scientific theories as an instrument to
support the claim that some mathematical objects exist. I will show how to this platonist
attitude there corresponds a strong criticism intended to block the possibility of making
such a realist inference in EIA.

14The reader may perhaps be surprised at reading that I am going to consider Van
Fraassen’s model among the WTA models, and not among the pluralist views of this
second part. I will give a motivation for this choice in chapter 2, when presenting the
criticisms which have been leveled against the pragmatic account. Nevertheless, let me
note here that Van Fraassen accepts the idea that there are different kinds of explanation
(and this is a core idea of his model), and this is perfectly in line with a pluralist view on
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take into consideration two recent views, that of Christopher Pincock and

Robert Batterman. As in the first part, I shall also discuss the ontological

commitment which results from the adoption of such positions. These posi-

tions are extremely important because they represent fresh perspectives to

the study of MEPP. Furthermore, to introduce these views will highlight the

entanglement of the notion of MEPP in the contemporary debates on mod-

elling, application of mathematics and idealization in science.

In the final part of my dissertation, part III, I will propose my own ap-

proach to MEPP. In particular, my aim will be twofold: I will defend the

idea that pluralism is the best alternative to the study of MEPP (at least for

what the scientific practice seems to suggest us); I will show how through the

introduction of the categories of intellectual tools and conceptual resources

we are able to account for MEPP which have been considered as genuine in

scientific practice, and this without losing the pluralist principle as guide.

In proposing my own approach to MEPP I will take into consideration

a general moral which emerges from the criticisms to the models presented

throughout this dissertation: in order to capture a notion of MEPP which

accords with our scientific and mathematical practice we have to consider

some qualitative factors into our philosophical model of explanation (instead

of purely quantitative factors). In general, I will refer to quantitative factors

as those factors which can be captured through a formal scheme or analysis.

On the other hand, qualitative factors are pragmatic factors, which cannot be

captured through such a formal scheme or analysis. To analyze the nature of

these qualitative ingredients, I will adopt a ‘bottom-up’ methodological ap-

proach to MEPP: I will take the case studies themselves, i.e. cases of MEPP

recognized as such in the scientific practice, as starting point for philosophi-

cal analysis. This is why, in chapter 7, I will assess the three WTA models on

a case of MEPP coming from the scientific practice. The choice to perform

this assessment in this chapter, and not during my discussion of the models

explanation. However, he gives a single encompassing model for explanation (his ‘why-
question’ account). In this sense, Van Fraassen is therefore not pluralist (at least according
to my definition of pluralism), and his approach is a WTA approach to explanation.
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in Part I, is motivated by the fact that I will use this testing to introduce

my approach to MEPP in the final chapter. This strategy gives, I think, a

more uniform character to the final part and to the general structure of the

dissertation.

The picture of explanation I am going to sketch in the last part is based

on a paradigm totally different from that which stands behind the majority

of the accounts presented in this dissertation. With the only exception of

Batterman’s and Van Fraassen’s models, in fact, all these models are based

on the idea that the feature which contributes to the genuineness of an ex-

planation is an objective feature, i.e. a feature which does not depend upon

the observer performing the explanation. According to this view, the task of

a theory of explanation is to individuate this particular feature (a particular

quality of the mathematical formalism, a particular state of affairs, a fact, a

relation which holds in the world or in mathematics). On the other hand,

I will consider that it is the way in which we identify a particular state of

affairs that contributes to the genuineness of a MEPP. In my view, a genuine

explanation does not result from the identification of a particular state of af-

fairs or property of the world or mathematics, but rather from the fact that

we can look at that property or state of affairs in a specific way. I am going to

argue that when we can reconceptualize a particular state of affairs (through

particular mathematical concepts which I call conceptual resources), and this

reconceptualization permits to use particular abilities to reason (intellectual

tools), we do have a genuine explanation.

As I have observed, Batterman’s and Van Fraassen’s models are different

from the majority of the models considered in this study because they are

not based on the idea that the feature which contributes to the genuineness

of an explanation is an objective feature. And therefore they seem to be

compatible to my approach in some respect. However, let me anticipate that

there is some essential difference between my approach and these accounts.

First, Van Fraassen’s model is a WTA model, and my approach will be based

on a pluralist principle. Second, in the details, my proposal will considerably
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depart from Van Fraassen’s and Batterman’s.

I will present the notions of conceptual resources and intellectual tools in

the final chapter. In the same chapter, in order to illustrate how my ideas

work, I will discuss my approach in the context of the example of MEPP

introduced in chapter 7. A specific section will be devoted to the possibility

of generalizing my framework. Finally, I will point to the payoff of adopting

such an approach. In particular, how it might provide insights into the on-

tological dispute in philosophy of mathematics (Enhanced Indispensability

Argument) and into the debate on the notion of scientific understanding.

Far from offering a solution to the problem of what a MEPP is, my study

will suggest, I hope, new directions which are yet to be explored.
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Part I

The winner-take-all approach

to explanation
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Chapter 1

Steiner’s approach to MEPP

The first explicit attempt of giving an account of MEPP in analytic philos-

ophy has been made by Mark Steiner in his paper “Mathematics, explanation

and scientific knowledge” [Steiner, 1978b]. His account, which is illustrated

by taking into consideration a single test-case from the realm of kinematics of

rigid body motion, relies on his theory of explanation in mathematics, which

is presented in his other paper “Mathematical explanation” [Steiner, 1978a].

In Steiner, the possibility of grounding an account of mathematical expla-

nation in physics on an account of mathematical explanation within mathe-

matics comes from the assumption that there exists some kind of continuity

between natural sciences and mathematics. As he observes, however, this

continuity refers only to methodological similarities and not to the possibil-

ity of interactions between the two worlds. Although these methodological

similarities are discussed in a more comprehensive way in his books The

Applicability of Mathematics as a Philophical Problem [Steiner, 1998] and

Mathematical Knowledge [Steiner, 1975], the point is stressed in both his

1978 papers on explanation:

I myself have argued for continuity between the natural and math-

ematical sciences in Mathematical Knowledge. But such continuity

begins and ends with methodological alikeness: both describe an ob-

jective world of entities, and (I argue) the methods used in exploring
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the two worlds are, despite common opinion to the contrary, remark-

ably similar. There may even be a power of observing mathematical

truth akin to physical perception. But the foregoing considerations

preclude any interaction between the two worlds. [Steiner, 1978b, p.

27].

The growing acceptance, however, of continuity between the natural

and mathematical sciences – urged by Quine, Putnam and the present

author – has prepared the way for what follows here. [Steiner, 1978a,

p. 135]

I am going to examine his account of MEPP and therefore I will concen-

trate on his [Steiner, 1978b]. However, since Steiner’s account of MEPP is

based on his theory of mathematical explanations within mathematics, I will

also need to discuss his [Steiner, 1978a].

Steiner’s [Steiner, 1978b] is divided into three parts. In the first part, he

presents his account of mathematical explanation in physics. As a test case

he takes an example from the kinematics of rigid body motion: the Euler’s

theorem for the existence of an instantaneous axis of rotation. As we will

see, the fact that this example is considered by Steiner as a genuine case of

MEPP is parasitic on the fact that, for him, such a theorem is based on an ex-

planatory mathematical proof. This is in line with Paolo Mancosu’s assertion

that “whatever account we will end up giving of mathematical explanations

of scientific phenomena, it won’t be completely independent of mathemati-

cal explanation of mathematical facts” [Mancosu, 2008b, p. 192-193]. I will

present Steiner’s model of MEPP in the next sections. Before that, however,

let me shortly consider the second and the third part of Steiner’s paper.

The second part of [Steiner, 1978b] is devoted to a general discussion of

the causal theory of knowledge under the forms:

ω One cannot know anything about F ’s unless this knowledge is caused

by at least one event in which one F participates.
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θ It is impossible to know anything about an entity x unless x itself

participates in the cause of that knowledge1

This discussion is important because it introduces Steiner’s platonist po-

sition in philosophy of mathematics, which is something that (as we will see

throughout this chapter) is often discussed by him in connection with his

view on explanation. In particular, Steiner argues that the causal theory of

knowledge in its forms ω and θ is not scientific, i.e. it is unable to account

for our scientific knowledge. He points out that a correct account of scien-

tific inference could not be obtained starting from a theory which considers

perception as the only way to obtain knowledge. To substantiate his claim,

he takes an example from nuclear physics, and specifically the beta-decay of

a stationary nucleous of Lithium 6:

Now we do not learn about the neutrino by transmission of energy

from the neutrino to us –the neutrino is very difficult to detect by

direct interaction. Indeed, as far as is known, beta decay is noncausal

–no anterior event causes the breakup of the unstable lithium 6 nu-

cleus. Nor does the neutrino participate in any event which causes

the other particles’ motion-through which we infer the existence of

the neutrino. Beta decay “just happens” in accordance with the law of

conservation of momentum, enabling us to infer a new particle. Laws

of conservation are simply not causal laws. What they provide are

constraints on what is allowed to happen [Steiner, 1978b, p. 22].

According to Steiner, in this case the inference (from which we deduce the

existence of the neutrino) is given only by the law of conservation of momen-

tum. But this law violates “the spirit” of the causal theory of knowledge be-

cause: a) the considered law does not provide the sort of knowledge required

by ω and θ (there is no anterior event which causes the decay; the neutrino

does not participate in any particle-interaction which is used to infer its ex-

1Observe that θ is a version of ω more suitable for attacking the platonist position, as
Steiner rightly observes [Steiner, 1978b, p. 21].

24



istence); b) the neutrino does not exert any causal influence on the knower2.

To adopt the causal theory of knowledge in the forms above amounts to

considering that empirical evidence for numbers is impossible because of the

non-material qualities attributed to mathematical entities. However, as the

example shows, the causal theory of knowledge under these forms is not the

epistemology required by modern science. Therefore Steiner’s conclusion is

that the causal theory of knowledge must be considered as unable to block

mathematical knowledge.

The previous considerations, contained in the second part of [Steiner, 1978b],

are intended to show that the causal theory of knowledge cannot be used to

deny the existence of numbers. In the third and last part of his paper Steiner

makes a different move. He assumes the existence of numbers and asks if

empirical results can be used to refuse their existence. He starts his discus-

sion by taking into account Benacerraf’s structuralists considerations about

arithmetics as the science of progressions:

It was pointed out above that any system of objects, whether sets or

not, that forms a recursive progression must be adequate. But this is

odd, for any recursive set can be arranged in a recursive progression.

So what matters, really, is not any condition on the objects (that is,

on the set) but rather a condition on the relation under which they

form a progression. [Benacerraf, 1965, p. 69]

Any object can play the role of 3; that is, any object can be the third

element in some progression. What is peculiar to 3 is that it defines

that role -not by being a paradigm of any object which plays it, but by

representing the relation that any third member of a progression bears

2The latter point is a response to W. D. Hart’s view of θ [Hart, 1977]. Hart argues
that when learning something about the world (an object, the neutrino, etc.), every learner
changes materially and the change results from an energy absorption from the environment.
This is how the object participates in the cause of our knowledge of it (according to θ).
With the example of the beta-decay of Lithium 6, Steiner is pointing out that the transfer of
information needs not involve the transfer of energy. In particular, the neutrino interacts
with us but this interaction is particularly difficult to detect, therefore in this case the
transfer of energy does not participate in the cause of the knowledge of the neutrino.
This, according to Steiner, would provide a lever on Hart’s interpretation of θ.
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to the rest of the progression. [... ] Arithmetic is therefore the science

that elaborates the abstract structure that all progressions have in

common merely in virtue of being progressions. It is not a science

concerned with particular objects – the numbers. The search for which

independently identifiable particular objects the numbers really are

(sets? Julius Caesars?) is a misguided one. [Benacerraf, 1965, p. 70]

Steiner observes that, once we assume the existence of a single infinite

progression, empirical results cannot falsify arithmetics. They can only

state its inapplicability. Contrary to Quine’s and Goodman’s arguments

[Goodman et al., 1947]3, the existence of an infinite arithmetical progression

“cannot be experimentally demonstrated”.

To sum up, according to Steiner the causal theory of knowledge (in its

forms ω and θ) cannot be used to make inferential claims about numbers,

and empirical results cannot falsify them. Furthermore, as we are going to

see, Steiner argues that mathematical explanation of physical phenomena do

exist but this does not conflict with the impossibility of showing the exis-

tence of an infinite progression using empirical results [Steiner, 1978b, p. 27].

In presenting his account of mathematical explanations in physics, in fact,

Steiner also considers the existential implications of assuming the existence

of such kind of explanations.

In the following section, I will concentrate on the first part of Steiner’s

[Steiner, 1978b], where his account of mathematical explanation in physics is

offered (together with the ontological considerations which follow). Next, I

will skip to his account of mathematical explanation in mathematics, which

is essential in order to fully understand the former. After that I will come

back to Steiner’s account of MEPP and I will show how the previous consid-

3Steiner considers Quine’s argument for platonism in mathematics as a transcendental
argument: “But Goodman and Quine pointed out thirty years ago the apparent impossibil-
ity of describing the world without reference to numbers. I would put their point thus: to
describe the experience of diversity and change requires mathematicatical entities. [...] We
cannot say what the world would be like without numbers, because describing any think-
able experience (except for utter emptiness) presupposes their existence” [Steiner, 1978b,
p. 19-20]. In passing, let me observe that Steiner’s reading of Quine’s argument does not
reflect the common interpretation of that argument [Panza et al., 2010].
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erations concretely fit the example of MEPP given by Steiner. Finally, I will

report some criticisms.

1.1 Steiner on MEPP

In the opening section of his [Steiner, 1978b], Steiner considers two ques-

tions:

• Do physical phenomena have mathematical explanations?

• If so, what existential conclusions follows? Do such explanations make

reasonable the existence of mathematical entities?

In order to answer the first question, he discusses a single example from

mechanics, and in particular from kinematics: the general displacement of

a rigid body with one point fixed. This motion can always be obtained by

rotating the body of a certain angle about a fixed axis. The axis, called

the “instantaneous axis of rotation”, passes through the fixed point. The

result was proved for the first time by Euler in his Decouverte d’un Nouveau

Principe de Mécanique [Euler, 1750] and is known in physical and mathemat-

ical textbooks under the name of “Euler’s theorem” for rigid body motion4.

As formulated in a classical texbook of mechanics, Euler’s theorem states

that

Theorem 1.1. The general displacement of a rigid body with one point fixed

is a rotation about some axis [Goldstein, 1957, p. 118].

Although we can prove the theorem by geometry alone5, a simple al-

gebraic proof shows the existence of the axis. Steiner points out that we

have a mathematical explanation for the physical fact (i.e. the existence of

4Observe that, in his presentation of the theorem, Steiner does not report Euler’s
original proof. For a reconstruction of Euler’s original argument see [Koetsier, 2007, p.
184-185]. Euler does not use the word “instantaneous axis”. He refers to it simply as “axe
de rotation” [Euler, 1750, p. 95].

5See [Whittaker, 1904, p. 2], or [Targ, 1987, p. 221-222].
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such a fixed axis in real space) because we obtain it from such “explana-

tory” algebraic proof plus the following two physical assumptions (or “bridge

principles”, as Steiner calls them):

• Space is 3-dimensional euclidean

• The rotation of a rigid body around a point generates an orthogonal,

real, proper transformation6

How then are the foregoing remarks linked to an “account” of MEPP?

According to Steiner, we have a mathematical explanation of a physical fact

when, removing the physical assumptions (such as those above), what we

are left with is a mathematical explanation of a mathematical fact. In other

words, if we delete the physics we remain with an explanatory proof of a

theorem (where the import given by Steiner to the expression “explanatory

proof” will be clarified the next section). He writes:

I shall not reproduce my analysis of mathematical explanation here,

but assume that mathematical explanation of mathematical truth ex-

ists. The difference between mathematical and physical explanations

of physical phenomena is now amenable to analysis. In the former,

as in the latter, physical and mathematical truths operate. But only

in mathematical explanation is this the case: when we remove the

physics, we remain with a mathematical explanation of a mathemat-

ical truth! In our example, the “bridge” between physics and mathe-

matics is the assumptions that space is three-dimensional Euclidean,

and that the rotation of a rigid body around a point generates an or-

thogonal, real, proper transformation (to use the lingo). Deleting these

assumptions, we obtain an explanatory proof of a theorem concerning

transformations and eigenvectors. In standard scientific explanations,

after deleting the physics nothing remains [Steiner, 1978b, p. 19].

6A proper tranformation is a tranformation whose representative matrix has determi-
nant +1. Tranformations whose representative matrix have determinant −1 are called
improper. I will come back to these notions in section 1.3, where I will also present the
algebraic proof of Euler’s theorem.
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Hence, as it is clear from the quotation, Steiner’s response to the first ques-

tion “Do physical phenomena have mathematical explanations?” is positive:

there exist mathematical explanations of physical phenomena. Moreover,

these explanations rely on the ‘explanatoriness’ of proofs in mathematics

(“when we remove the physics we remain with a mathematical explanation

of a mathematical truth”). Thus, in order to appreciate his account of MEPP,

it is natural to turn to what Steiner considers as a mathematical explanation

within mathematics. This is why, in the next section, I will move to Steiner’s

account of explanation in mathematics.

Before going thorugh his theory of mathematical explanation in mathe-

matics, however, let me mention as an aside Steiner’s answer to the second

question reported at the beginning of this section: “Do such explanations

make reasonable the existence of mathematical entities?”. Although sup-

porting Quine and Goodman’s argument about the necessity of mathemat-

ical entities in order to “describe the experience of change and diversity”,

Steiner denies that mathematical explanation of physical phenomena could

be used to infer the existence of mathematical entities [Steiner, 1978b, p.

19]. And this because the existence of mathematical entities is presupposed

in the description of the phenomena to be explained. As we will see in the

next chapter, this position is controversial. For instance, Alan Baker, an-

other philosopher interested in the role that MEPP play in the ontological

dispute in philosophy of mathematics, will argue for an opposite claim (he

will maintain that MEPP do make reasonable the existence of mathematical

entities).

1.2 Steiner’s account of explanation in math-

ematics

In his [Steiner, 1978a], after having discussed (and rejected) four criteria

of explanatoriness of a mathematical proof (abstracteness; generality; discov-

29



erability and visualizability7), Steiner gives his own account of explanation

within mathematics in order to distinguish between an explanatory and a

non-explanatory proof.

The criteria of abstracteness, generality and discoverability are discussed

comparing different proofs of a same theorem (respectively, the sum of the

first n integers equals n(n+1)
2

, the irrationality of
√

2, the Pythagorean theo-

rem and the Eulerian identity (1+x)(1+x3)(1+x5) = 1+ x2

1−x2 + x4

(1−x2)(1−x4)
+

x9

(1−x2)(1−x4)(1−x6)
), while the suggestion that there exists a link between ex-

planation and the ability to visualize a proof is dismissed because of the

subjective character of the latter. Indeed, Steiner’s general idea is that a

theory of mathematical explanation for mathematical proofs must show the

plausibility of those four criteria.

The starting point of his discussion of explanation in mathematics is the

following observation:

[...] to explain the behaviour of an entity, one deduces the behavior

from the essence or nature of the entity. [Steiner, 1978a, p. 143].

The previous remark is aimed to face a well-known problem: mathemat-

ical truths are commonly regarded as necessary, then it is meaningless to

speak of essential properties of a mathematical entity. Thus, in order to es-

cape all the difficulties related to the definition of an essential property of a

mathematical entity x, i.e. a property x enjoys in all possible worlds, Steiner

introduces the relative notion of characterizing property :

Instead of “essence”, I shall speak of characterizing property, by which

I mean a property unique to a given entity or structure within a family

or domain of such entities or structures. (I take the notion of a family

or domain undefined in this paper; examples will follow shortly.) We

thus have a relative notion, since a given entity can be part of a number

7If we regard each criterion: the more explanatory proof is the more abstract (abstracte-
ness); the more explanatory proof is the more general (generality); the more explanatory
proof is the proof which can be used to determine –and not to verify!– the result (discov-
erability); the more explanatory proof is that which can be visualized (visualizability).
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of different domains or families. Even in a single domain, entities may

be characterized multiply. [Steiner, 1978a, p. 143]

For Steiner, an explanatory proof depends on such a property, while a

non-explanatory proof does not. In particular,

an explanatory proof makes reference to a characterizing property of

an entity mentioned in the theorem, such that from the proof it is

evident that the result depends on that property. [Steiner, 1978a, p.

143]

The dependence characterizing property-result comes from the fact that

if we try to manipulate the proof, by substituting in it a differerent object

of the same domain, the theorem collapses. This introduces us to Steiner’s

second core-notion about explanation by proofs: generalizability – through

the variation of a characterizing property. If we deforme the proof varying

a certain characterizing property of a related entity, what we obtain in re-

sponse is a change of the theorem. To every deformation of the proof there

corresponds a deformation in the theorem, i.e. to an array of proofs there

corresponds an array of theorems. The theorems obtained are proved and

explained by the deformations of the original proof. This is what Steiner

takes for an explanatory proof to be generalizable. Observe, however, that

although Steiner offers some examples, the notion of ‘deformation’ is left un-

defined in his discussion. He writes: “Deformation is similarly undefined –

it implies not just mechanical substitution, but reworking the proof, holding

constant the proof idea” [Steiner, 1978a, p. 147].

To sum up, Steiner offers two criteria for a proof to be considered as

explanatory:

C1 The proof depends on a characterizing property mentioned in the the-

orem (dependence criterion)

C2 It is possible to deform the proof “substituting the characterizing prop-

erty of a related entity”and getting“a related theorem”(generalizability

criterion)
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He analyzes some examples in order to show how his approach allows us

to distinguish an explanatory proof from a non-explanatory one, and how it

is also suitable to account for the plausibility of the four previous criteria

(abstracteness; generality; discoverability and visualizability). Since we are

interested in MEPP, I will not examine all his cases but only what is essential

to illustrate his two criteria C1 and C2 at work.

As first example he takes the following theorem: the sum of the first n

integers is equal to n(n+1)
2

. Steiner claims that the classical inductive proof

of this theorem is not explanatory because it does not characterize anything

mentioned in the theorem. Thus the impossibility of deforming the theorem

by varying the inductive procedure8. Two explanatory proofs (explanatory

in Steiner’s sense) are given. The following proof:

1 + 2 + 3 + ... + n = S

n + n− 1 + n− 2 + ... + 1 = S ′ = S

n+ 1 + n+ 1 + n+ 1 + ... + n+ 1 = n(n+ 1)

and a geometrical argument based on the diagram of Figure 1.1. Concerning

the geometrical argument, the proof is very simple. Consider the diagram

in Figure 1.1: we divide a square of dots, n to a side, along its diagonal;

what we get is an isoscele triangle containing S(n) = 1 + 2 + 3 + ...n dots

(triangle ABC in the diagram); the square of n2 dots is composed of two

triangles S(n) (ABC and DBC), but the diagonal BC (composed by n

dots) is counted twice in the sum of the triangles; thus we have the result:

S(n) + S(n) = n2 + n.

Are the two criteria C1 and C2 fulfilled in the previous proofs? In both

of the cases, according to Steiner, the proof involves a characterizing prop-

erty. In the first case, the characterizing property is given by the symmetry

8Against Steiner, Hafner and Mancosu pointed out that the inductive proof of ‘For all
n, 1+2+ ...+n = n(n+1)

2 ’ does allow for deformation. See [Hafner et al., 2005, p. 234-237]
for their argument.
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B

C

D

Figure 1.1: A geometrical argument for 1 + 2 + ...+ n = n(n+1)
2

.

properties of the sum 1 + 2 + ... + n, while in the second case by its geo-

metrical properties9. Concerning C2, he suggests that the generalizability is

given by the fact that if we vary the symmetry or the geometry we obtain

new results10.

Let’s consider his second example. Pointing to the irrationality of
√

2,

Steiner claims that using the fundamental theorem of arithmetic (i.e. each

number has a unique prime power expansion) we can “argue for the irra-

tionality of the square root of two too swiftly and decisively” [Steiner, 1978a,

p. 138] than in the case of the traditional Pythagorean proof.

The Pythagorean proof for the impossibility of a2 = 2b2 (with a and b

positive integers) is considered by Steiner non-explanatory because depend-

ing upon the crucial lemma Lc that ‘a2 is divisible by 2 only if a is’. The

proof, as it is well-known, runs as follows: we assume that a and b are rela-

tively prime; then, if the equation a2 = 2b2 is true, a2 must be divisible by

2; by lemma Lc, if a2 must be divisible by 2, so must be a; consequently, we

9What exactly are these geometrical properties to be considered as characterizing prop-
erties? Steiner does not say anything about [Steiner, 1978a, p. 145]. The same point
(i.e. “the need for precise definitions here”) has been raised by Hafner and Mancosu
[Hafner et al., 2005, p. 233].

10Again, Steiner is vague and he does not provide any detailed evaluation of how the
proof can be generalizable according to his criterion C2.
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obtain the new equation (2a′)2 = 2b2; if we divide by 2 the left and right

terms of the equation we obtain that 2a′2 = b2; the last equation shows that

also b2 is divisible by 2, but this contradicts our assumption that a and b are

relatively prime (q.e.d.). To generalize this result for other numbers than 2 is

to verify lemma Lc for other numbers. This can be made by squaring an ar-

bitrary odd number 2q+1 and showing that the result must be odd. For each

prime p it can be verified that if p divides a2 it must divide a also, but “the

proofs become more and more complex” [Steiner, 1978a, p. 138]11. Therefore

Steiner considers this proof non-explanatory because if we want to generalize

the result we have to reprove every time the crucial lemma Lc on which it

depends, thus increasing the complexity of the proof. In other words, the

fact that the crucial lemma must be proved again every time makes Steiner

not accepting this proof as a generalizable proof12.

Let’s now focus on what Steiner considers as an explanatory proof of the

irrationality of
√

2, i. e. the proof which uses the fundamental theorem of

arithmetic. The proof is the following: consider the prime expansion of a2 in

the equation a2 = 2b2; focus on the 2’s which appear in the prime expansion

of the right and the left term of the equation; b2 is multiplied by 2, thus the

prime 2 will appear with an odd exponent on the right side of the equation;

but, on the left side, the prime 2 which appear in the expansion of a2 will

appear with an even exponent (the exponent is doubled in the expansion of

a); we can then conclude, because of the uniqueness of the expansion, that a2

never equals 2b2 and the equation is not true. In this case Steiner considers as

characterizing property the prime expansion of a number, i.e. the property a

number has to have a prime expansion. This uniquely determines a number

within the domain of all natural numbers. But what about C2? The gener-

alizability of the proof is given by the fact that if we vary the object (and

thus the characterizing property) by introducing n we get a general theorem:

11If p = 5, for instance, we have to square 5q + 1, 5q + 2, 5q + 3, 5q + 4 and show that
the result is not divisible by 5.

12Steiner’s motto is: “It is not the general proof which explains; it is the generalizable
proof ” .
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for positive integers n, a, and b, a2 = nb2 only if n is a perfect square; so the

square root of n is either an integer or an irrational13.

Referring to the four criteria (abstracteness; generality; discoverability

and visualizability), Steiner is now able to make some remarks. Concerning

generality as a criterion for explanatoriness, he underlines that it is the gen-

eralizable proof which explains, and not the more general proof14. Generality

is necessary “for capturing the essence of a particular. [...] To characterize

the primes may take the full resources of complex analysis” [Steiner, 1978a, p.

146]. The same holds for abstraction. For instance, in the case of induction,

abstraction is considered by Steiner as a useful tool to find a characterizing

property and have a better comprehension of what is going on in the proof15.

In the case of the sum of the first n integers, referring to the proof which

makes use of symmetrical considerations, he points out how abstraction is

what permits us to formalize the pictorial proof and highlight the symme-

try properties of the sum 1 + 2 + 3 + ...n [Steiner, 1978a, p. 136, 145]. The

same raise in abstraction (quantification over sequences of natural numbers

rather than on numbers themselves) makes possible to visualize the geomet-

rical properties of the sum 1 + 2 + ... + n in the picture-proof of the sum

13How do we arrive at this generalization? Substitute to n any prime 3, 5, 7, ... in the
equation a2 = nb2. Count the occurrences of the considered prime (for instance, count
the occurrences of 3 rather than that of 2). The conclusion follows as in the example for
2, because the occurrences will be odd. Now, if we substitute to n a number which is
not a prime (for instance: 6, 8, 15, 20, etc..), by considering its prime power expansion
(6 = 2 · 3, 8 = 23, 15 = 20 · 31 · 51, 20 = 22 · 51) there will be again an odd number of
some factor (‘2’ and ‘3’ in the first case, ‘2’ in the second case, ‘3’ and ‘5’ in the case of
n = 15, ‘5’ in the case of n = 20). Finally, we observe that in order for the equality to be
true all the exponents in the prime power expansion of n must be even. In other words,
the number to be substituted in the place of 2 must be a square. Steiner considers these
remarks (leading to a new theorem) as something evident which emerges from the original
proof-idea concerning

√
2; however, other authors do not [Resnik et al., 1987, p. 145].

14Note that this contrasts with some remarks by Polya about the importance of gener-
ality in proving theorems ([Polya, 1954] and [Polya, 1968]).

15Observe that, in order to fix a criterion of abstraction, in his example concerning the
sum of the first n integers, Steiner states that the inductive proof is less abstract than the
proof which uses symmetry because, when formalized, the former has to do with numbers
themselves while the latter quantifies over sequences of natural numbers.
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of the first n integers (Ibid.)16. He discards, however, the suggestion that

something counts as a mathematical explanation only if it can be visualized,

on the grounds that such a condition would make mathematical explanation

“subjective” [Steiner, 1978a, p. 143].

Finally, Steiner rejects “discoverability” as a criterion for explanation and

inverts the usual connection which is considered between the two concepts:

discoverability, as in the case of the proof of the irrationality of
√

2 using

the fundamental theorem of arithmetic, is for him “at best a symptom of

explanation in mathematics, not a criterion” [Steiner, 1978a, p. 140]17.

1.3 Steiner’s test-case of MEPP (revisited)

Now, with Steiner’s account of mathematical explanation within mathe-

matics in our hands, we can come back to Steiner’s account of MEPP.

As we have seen in section 1.1, for Steiner we have a mathematical expla-

nation in physics when removing the physics (physical assumptions or bridge

principles) we rest with a mathematical proof which depends on a character-

izing property and could be generalized by varying that property. Or, which

is equivalent, we have a mathematical explanation of a physical phenomena

when the following criterion is satisfied:

CMEPP If we remove the physics (physical assumptions or bridge principles) we

rest with a mathematical proof which satisfies criteria C1 and C2

where C1 and C2 are the criteria for explanatory proofs introduced in the

previous section:

16Let me note, again, that Steiner identifies the “geometrical properties [of the sum
1 + 2 + ...+n]” with the characterizing property on which depends the picture-proof based
on diagram 1.1 [Steiner, 1978a, p. 145]. However, he does not push further his discussion
here, and it is not clear to what geometrical properties he is referring to.

17For a discussion on discoverability, proof and explanation in mathematics see
[Giaquinto, 2005] and [Giaquinto, 2008]. In particular, Giaquinto offers an example where,
using a diagram, we are intuitively led to the discovery of the Pythagora’s theorem; how-
ever, he does not consider this as a way of proving the theorem. The example shows that
there may be discovery without proof.
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C1 The proof depends on a characterizing property mentioned in the the-

orem (dependence criterion)

C2 It is possible to deform the proof “substituting the characterizing prop-

erty of a related entity”and getting“a related theorem”(generalizability

criterion)

We can now reconsider Steiner’s example of MEPP, given in his [Steiner, 1978b]

and introduced in section 1.1, in order to see how criterion CMEPP holds for

that case.

Consider again the statement of Euler’s theorem 1.1: “The general dis-

placement of a rigid body with one point fixed is a rotation about some axis”

[Goldstein, 1957, p. 118]. The statement is very clear. It says that when a

rigid body is moved around a fixed point (for instance, its center) it is always

possible to find an axis, passing through the fixed point, whose position is

the same as before the motion. This is, of course, a physical fact. In this

section I am going to show why Steiner considers that criterion CMEPP holds

for this case. To do that, I will adopt the following 2-step strategy:

∆ I will show how it is possible to remove from theorem 1.1 the physical

assumptions singled out by Steiner, thus obtaining a “pure” mathemat-

ical theorem.

Σ I will concentrate on a particular algebraic proof of this mathematical

theorem, considered explanatory by Steiner himself, and I will report

Steiner’s indications about the validity of criteria C1 and C2 in the

proof.

[Step ∆] Since this step requires some technicalities, I am going to pro-

ceed gradually. I will report first some kinematical considerations which will

be essential to the comprehension of the physical problem. Next, I will show

that we can obtain a pure mathematical version of Euler’s theorem if we elim-

inate the physical assumption which are behind the formulation 1.1 given in

section 1.1. This mathematical version of the theorem, whose proof will be
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discussed in Step Σ, will make use of the language of linear algebra and group

theory.

In kinematics, the orientation of a rigid body in motion can be described

at any instant by three independent parameters (Euler angles θ, φ, ψ are

commonly used). The Euler angles are defined as three successive angles of

rotations. If we consider two coordinate systems with the same origin (not

necessarily the center of mass of the object), a Cartesian system of axis fixed

in space and another Cartesian system fixed with the rigid body, the mo-

tion is described as a transformation from the former system to the latter

by means of the three successive rotations performed in a specific sequence

(the displacement of the rigid body involves no translation of the body axes

and the only change is in orientation). We can identify this orthogonal trans-

formation (a transformation which preserves distances and angles) with an

orthogonal matrix the elements of which are espressed in terms of this suit-

able set of parameters (Euler angles). An orthogonal matrix A is a matrix

with the property that its transpose matrix At is equal to its inverse A−1:

At = A−1. It is easy to see that, if a matrix is orthogonal, its determinant

is +1 or −118.

Assume now that at time t = 0 the body axes, i.e. the axes fixed with

the rigid body, are chosen coincidents with the space axes, i.e. the system

of axes parallel to the coordinate axes of external space. With the progres-

sion of time the orientation of the rigid body will change and the matrix of

the tranformation will evolve continuousily from the identity tranformation

A(0) = I to the general 3× 3 matrix A with real entries. If the evolution of

the matrix is continuous from the unit matrix, which has determinant +1,

then the determinant of A cannot change and must be +119. Euler’s theorem

18Since AAt = I, we have: |AAt| = |A||At| = |A||A| = |A|2 = |I| = 1. Here I
used two well-known properties of determinants: the fact that, for any square matrix A,
|AB| = |A||B|, and the property |At| = |A|.

19Another method of reaching this conclusion is to observe that a matrix A with de-
terminant −1 amounts to a transformation in which a right-hand coordinate system is
changed into a left-handed system. This transformation, knows as “inversion” or “reflec-
tion” of the coordinate axis, cannot be accomplished by any rigid change in the orientation
of the coordinate axis. In other words, this transformation never corresponds to a physical
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states that the body set of axes at any time t can always be obtained by a

single rotation of the initial set of axes (taken as coincident with the space

set). In other words, the operation implied in the matrix A describing the

physical motion of the rigid body is a rotation.

To make the assumption that the operation implied in the matrix A de-

scribing the physical motion of the rigid body is a rotation assures that one

direction (the axis of rotation) remains unaffected in the operation, and the

magnitude of the vectors is unaffected too. This is to say that, if there ex-

ists an axis of rotation, any vector lying along this axis must have the same

components in both the initial and the final frame of reference. Observe,

however, that the fact that the magnitude of the vectors be unaffected is au-

tomatically provided by the orthogonality conditions. Consequently, to prove

Euler’s theorem 1.1 is to show that there exists a vector R that has the same

components in both the space and the body axis system. This particular

vector, called an eigenvector of the transformation α, is a non-null vector v

that is changed into itself by the transformation: α(v) = λv, where λ = +1.

The scalar λ, to which the eigenvector corresponds, is called eigenvalue20.

We can thus restate Euler’s theorem in the following form:

Theorem 1.2. The real orthogonal matrix specifying the physical motion of a

rigid body with one point fixed always has the eigenvalue +1 [Goldstein, 1957,

p. 119]

If we indicate with R a generic vector and with R′ its transformed vector,

to prove the theorem we have to demonstrate that there exists an R which

has the same components in both the space and the body axis system. Such

displacement of a rigid body. This is why the transformations representing rigid body
motion must be restricted to matrices having the determinant +1. See [Goldstein, 1957,
p. 122] for a discussion.

20In general, an eigenvector of a transformation α (a linear mapping) is every non-null
vector v that is transformed in a scalar multiple of itself: α(v) = λv. The scalar λ is
called eigenvalue. To say that there exists an eigenvector corresponding to the eigenvalue
λ = +1 is to say that the transformation changes a vector into itself (the vector has the
same components in both the systems and also the same magnitude), i.e. there exists an
axis which is left unchanged by the transformation.
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a vector R will be unchanged by the transformation. In matrix notation, the

problem can be formulated as follows:

R′ = AR = R (1.1)

which is a particular case (for λ = 1) of the general eigenvalue problem

(A− λ1)R = 0 (1.2)

From the theory of linear algebra, we know that we have non trivial

solutions for the eigenvalue equation 1.2 when the following determinant

vanishes:

|A− λ1| =

∣∣∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣∣∣ = 0 (1.3)

A proof of Euler’s theorem, then, must show that the characteristic (or

secular) equation 1.3 has at least one root λ = +1.

Now, as we have seen in section 1.1, Steiner claimed that by separating

the physical part from the mathematical part in the example, we are left with

an explanatory proof of a mathematical theorem concerning transformations

and eigenvectors. The previous considerations show that the first statement

of Euler’s theorem (“The general displacement of a rigid body with one point

fixed is a rotation about some axis”), given in section 1.1, is equivalent to

the statement 1.2 above (“The real orthogonal matrix specifying the physical

motion of a rigid body with one point fixed always has the eigenvalue +1”).

However, this is true under the assumption that the real orthogonal matrix

specifies the physical motion of a rigid body with one point fixed. As we have

seen in the kinematical considerations above, in order for this to be true the

matrix A must have the following properties: it must be 3× 3, it must have

real entries, it must be orthogonal and it must be proper (i.e. its determinant

must be +1). These properties are important because they map some phys-
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ical ingredients into the mathematical formalism: the fact that the matrix

must be 3× 3 maps the 3-dimensionality of the real space; the orthogonality

condition is required in order for the rigidity of the body to be conserved in

the motion (because of the orthogonality condition, in fact, the angles and the

magnitude of the vectors are unaffected in the transformation); the fact that

the determinant of the matrix be +1 eliminates reflections which cannot be

accomplished by a rigid motion. Furthermore, our orthogonal 3×3 matrix is

a representation of an orthogonal mapping α of the 3-dimensional Euclidean

space (α : V −→ V )21. Hence, in addition to the 3-dimensionality of the real

space, we are also assuming that the real space has an Euclidean structure.

To sum up, behind Euler’s theorem there are two physical assumptions:

• Space is 3-dimensional euclidean

• The rotation of a rigid body around a point generates an orthogonal,

real, proper transformation

Without these assumptions in play, as Steiner observes, we rest with

a pure mathematical theorem about transformations and eigenvalues. The

theorem says that the real proper 3× 3 orthogonal matrix A has always an

eigenvalue +1.

As we have seen above, an orthogonal matrix A is a matrix with the

following property: At = A−1 (the transpose coincides with the inverse).

Observe now that the class of n × n orthogonal matrices is a group under

matrix multiplication22. The group of real orthogonal n×n matrices is called

the orthogonal group, and it is denoted by O(n). The property At = A−1

21To be precise, the matrix A represents the mapping with respect to an orthonormal
basis, for instance the standard basis e1, e2, ..., en of Rn. This matrix is orthogonal, and
thus A−1 = At holds. An orthogonal mapping requires stronger conditions than a linear
one. The condition for transformations of an Euclidean space of dimension n to be orthog-
onals is that they preserve scalar product. Scalar product preserves angles and distances
between points.

22A group is a set G, together with a binary operation ∗ on G, which has the following
properties: 1) for all g and h in G, g∗h ∈ G; 2) for all f , g and h in G, f ∗(g∗h) = (f ∗g)∗h;
3) there is unique e in G such that for all g in G, g ∗ e = g = e ∗ g; 4) if g ∈ G there is
some h in G such that g ∗ h = e = h ∗ g.
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clearly holds for every real orthogonal matrix which belongs to O(n). Fur-

thermore, as we have seen above, the determinant of an orthogonal matrix

can be only +1 or −1, and then also |A| = ±1 holds for every member of

O(n). The subgroup of matrices with determinant +1 is called the special

orthogonal group, and it is denoted by SO(n).

Keep in mind that we regard a n× n matrix as representation of a linear

mapping α of the Euclidean space (α : V −→ V ), and n is the dimension of

the space (n = dim(V )). The characteristic polynomial Pα(λ) of the linear

map α : V −→ V is the polynomial |A − λI|, where A is our matrix repre-

sentation of α.

By using the previous terminology of groups, we can restate Euler’s the-

orem in the following mathematical form:

Theorem 1.3. Every matrix A ∈ SO(3), with A 6= I3, has an eigenvalue

+1 23.

This formulation, to which we arrived after some technicalities, is just

a modern algebraic formulation of Euler’s theorem. It is equivalent to our

original formulation 1.1 once the appropriate physical interpretation is es-

tablished. To establish this interpretation is to say that members of the

group SO(3) are linked to continuous motions in physical space to the extent

that: ordinary space is three-dimensional Euclidean; the rotation of a rigid

body around a point generates an orthogonal, real, proper transformation.

On the other hand, observe that if we ignore these assumptions (“we remove

the physics”) we rest with a pure mathematical theorem, theorem 1.3, whose

proof does not depend on any physical assumption.

[Step Σ] Steiner considers as explanatory a particular algebraic proof of

this theorem, and it will be to this proof that I will refer to. However, before

presenting the proof of theorem 1.3, let me consider some results which will

be useful for the general proof.

If A is a real orthogonal 3× 3 matrix, then

23[Sernesi, 1993, p. 305].
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(a) the eigenvalues all have unit magnitude (i.e. the product of any eigen-

value with its complex conjugate is 1).

(b) it has at least one real eigenvalue.

Proof of (a). Result (a) follows from the orthogonality of A. Although all

the elements of A are real, we must consider the possibility that the charac-

teristic equation has complex roots24. The magnitude of a complex vector is

determined by the sum of the squares of the magnitudes of the components:

|X|2 + |Y |2 + |Z|2 = R∗ ·R = |R|2 (1.4)

The orthogonality condition requires that the transformation leave the

magnitude of the vector R unchanged. Therefore:

R∗′ ·R′ = R∗ ·R (1.5)

But if R is eigenvector it must be true that:

R∗′ ·R′ = λ∗λR∗ ·R (1.6)

and hence we have our result:

λ∗λ = 1. (1.7)

Proof of (b). Result (b) is a direct consequence of two theorems: the funda-

mental theorem of algebra (FTA) and the complex conjugate root theorem

(CCRT). The first theorem states that any polynomial has at least a complex

root. If we accept the factorization of a polynomial of degree n, it has exactly

n complex roots. The CCRT says that if a polynomial in one variable with

real coefficients, such as |A − λ1|, has a complex root λ, then the complex

24In this case the corresponding eigenvector is associated to a complex space, and it
does not exist in the real space.
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conjugate λ∗ of λ is also a root of the polynomial. This means that, according

to CCRT, if λ is a solution of the polynomial equation |A− λ1| = 0, also λ∗

will be a solution of the same equation.

In general, the FTA says that |A − λ1| = 0 will always have complex

solutions, but not necessarily real solutions. However, we are considering a

real orthogonal 3 × 3 matrix, then the polynomial |A − λ1| is a real poly-

nomial (the entries of the matrix A are real, and so are the coefficients of

the polynomial) of odd degree (degree 3). By FTA, then, the polynomial

equation |A − λ1| = 0 has an odd number of solutions. Now, according to

CCRT, complex solutions come in conjugate pairs, and then there are an

even number of them in |A − λ1| = 0. Therefore the polynomial equation

|A− λ1| = 0 has at least one real solution (i.e. at least one real eigenvalue).

Moreover, by result (a) this real eigenvalue can only be +1 or −1.

It can also be proved that, if A is a real orthogonal 3 × 3 matrix, its

determinant is the product of the three eigenvalues which are solutions to

the characteristic equation |A − λ1| = 0: λ1λ2λ3 = |A|. Call this result

(c)25.

Observe that the previous results (a), (b) and (c) do not depend on the

3-dimensionality of the real space or on other physical assumptions. They

only depend on some properties of matrices and odd polynomials with real

coefficients. This observation is important because it makes clear that the

use of these three results in the proof which follows does not require any

physical assumption or dependence on the 3-dimensionality of the real space.

Finally, let’s consider the proof of Euler’s theorem 1.3. This proof, given

in Goldstein’s Classical Mechanics (1957), is the proof to which Steiner refers

to26.

Proof of Euler’s theorem 1.3. The proof of the existence of such an eigen-

value is very short and could be stated via a speedy argument which requires

25See [Goldstein, 1957, p. 121-122] for a proof.
26The very same proof is common in textbooks of linear algebra and group theory. See,

for instance, [Grove et al., 1985].
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no direct calculations but only results (a), (b), (c) and some background no-

tions. We assume A 6= I3 because A = I3 is the uninteresting case of the

identity transformation27.

Consider a real matrix A member of SO(3). For this matrix the determi-

nant is equal to +1. Furthermore we know that, in general, the characteristic

equation |A−λ1| = 0 has three roots which correspond to three eigenvalues.

We want to prove that one of those eigenvalues is our λ = +1.

Suppose now λ1, λ2 and λ3 are the eigenvalues of A. They are the roots of

a cubic polynomial with real coefficients (the entries of the matrix are real).

Thus, according to (b), one of the eigenvalue (say, λ1) is real. By CCRT, if

λ2 is not real, then its complex conjugate λ∗2 is also an eigenvalue (λ3 = λ∗2).

Since from (c) we have that |A| = λ1λ2λ3 = +1, we have two possibilities

for the eigenvalues:

(A) λ1 = +1, λ2 = λ3 = ±1

(B) λ1 = +1, λ2 = λ∗3 6∈ R (observe here the change in notation for λ∗3)

In either case we have that +1 is eigenvalue28

How then are Steiner’s criteria C1 and C2 supposed to operate in this

case? Recall, first of all, that for Steiner a proof is explanatory only if it

27The case A = I3 is uninteresting because it corresponds to a transformation which
does not involve any change in the coordinate system. The situation corresponds to a
rotation of zero degrees. It is easy to see that, for the particular case of I3, there exist
three eigenvalues λ = +1; this is because the matrix is diagonal with all entries equal
to 1, and therefore the characteristic equation is (λ − 1)3 = 0. The eigenvectors of the
identity matrix I3 are the unit vectors (1, 0, 0), (0, 1, 0), (0, 0, 1); all corresponding to the
eigenvalue λ = +1, of multiplicity 3.

28What interests us here is the existence of the eigenvalue. Observe, however, that the
proof given also shows that there is only one eigenvalue λ = +1. The unicity of λ = +1
can also be proved as a corollary of the more general theorem of Cartan-Dieudonné, by
showing that the dimension of the space Fix(α) of the fixed points of the transformation
is 1 [Grove, 2002, p. 49]. I sketch here the proof-idea. If we had that dim Fix(α)=2
(and not 1) we would have λ = +1 with multiplicity two (λ1 = λ2 = +1) and the third
eigenvalue, say λ3, would be -1 or +1. The first case λ3 = −1 should be discarded because
we know the determinant is +1, while the second case λ3 = +1 should be rejected because
three eigenvalues with value +1 would give us an eigenspace of dimension 3, which would
correspond to the identity transformation (the uninteresting case).
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makes evident that the conclusion depends on a property of some entity or

structure mentioned in the theorem (criterion C1). In other words, the first

thing to do is to check if the proof does involve such a characterizing prop-

erty.

Steiner’s attention in his paper “Mathematics, explanation and scientific

knowledge” [Steiner, 1978b], where the present example of Euler’s theorem

appears, is not explicitly directed at explanations in pure mathematics, but

the focus is elsewhere29. This is, perhaps, what precludes him from offering a

detailed description of how C1 and C2 are fulfilled in the proof above. How-

ever, in a personal communication he suggested me that we have to “pick the

characterizing property of SO(3) as having an odd dimension”. This means

that the entity (or structure) mentioned in the theorem is SO(3), which be-

longs to the family SO(n), while its characterizing property is ‘having an

odd dimension’. In what sense then does the previous proof depend on the

odd dimensionality of SO(3)? If we concentrate, as Steiner suggests, on the

proof strategy above, it is easy to notice that the existence of the eigenvalue

λ = +1 depends on the fact that n is odd. For instance, we have seen how

result (b) depends on the fact that the degree of the real polynomial |A−λ1|
is odd. And the degree of this polynomial is odd for the members of SO(n)

with n odd. Moreover, in the proof strategy we have used the fact that n is

odd, together with some considerations on the product of signed numbers,

to pick out two possible configurations (A) and (B) for the eigenvalues. A

look to these configurations has showed that the eigenvalue λ = +1 is always

a solution of the characteristic equation, which is the result we were looking

for. Furthermore, as Steiner rightly observes, there is no necessity for any

eigenvalue to be +1 [Steiner, 1978a, p. 18], because this does not hold for all

the elements of the family SO(n). In two or four dimensions, for instance,

29As we have seen, his attention goes to the existence of mathematical explanations in
science and to the existential conclusions which follow once the existence of such explana-
tions is accepted. I am particularly grateful to Mark Steiner for having discussed with me
his account of MEPP, and for his clarifications about how his criteria C1 and C2 should
be appreciated for the case of Euler’s theorem.
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the number of real eigenvalues is even and the theorem does not hold30.

Second, recall that for Steiner ‘generalizability’ comes when we substitute

the characterizing property of a related object and what we get is a related

deformed theorem (criterion C2). Concerning C2, then, Steiner’s idea is that

the generalizability of the proof above is obtained by replacing the dimension

3 by some odd number: “There is an explanatory proof of this [existence of

an eigenvalue +1] that extends to any Euclidean space of odd dimension”

(personal communication). It is easy to see how we can use this strategy to

get new theorems. By replacing 3 by some odd number we obtain our related

theorem, i.e. a theorem which states the existence of the eigenvalue +1 for

every real matrix A ∈ SO(n) with n odd (or, which is the same, a theorem

which states the existence of an instantaneous axis of rotation for every ro-

tation in a space having odd dimension). For instance, in his The Classical

Groups. Their Invariants and Representations [Weyl, 1973], Hermann Weyl

stated the general theorem as follows:

A proper rotation in a space of odd dimension has an ‘axis’ through

the origin whose points are fixed under the rotation. [Weyl, 1973, p.

58]

We finally have showed how Steiner’s account of MEPP, and then criterion

CMEPP , works for the particular test case proposed by Steiner himself.

1.4 Some criticisms

Steiner’s account of MEPP has not received much consideration among

philosophers of science and of mathematics. To my knowledge, only a re-

cent paper from Alan Baker [Baker, 2009] and Hafner and Mancosu’s arti-

cles on explanation ([Mancosu, 2000], [Mancosu, 2001], [Hafner et al., 2005],

[Hafner et al., 2008], [Mancosu, 2008b]) have devoted some attention to Steiner’s

30For the case of dimension n = 2, real eigenvalues are roots of a quadratic equation
and there is no vector in the space which is left unaltered by the rotation. The axis of
rotation is perpendicular to the plane and therefore out of the space.
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model for mathematical explanation in physics. However, these studies pro-

vide only a general discussion of the model and not a detailed analysis or

even some testing of it. Perhaps, the only exception is [Baker, 2009], where

Steiner’s model of MEPP is checked against what Baker considers as a gen-

uine case of MEPP. But, again, this assessment is only sketched and then it

cannot be considered as a solid test of Steiner’s model of MEPP. On the other

hand, Steiner’s model for explanation in mathematics has been tested and

largely discussed by various authors ([Resnik et al., 1987], [Butchart, 2001],

[Hafner et al., 2005] and [Cellucci, 2008]). Moreover, some efforts in improv-

ing it have been made [Weber et al., 2002].

In what follows I will concentrate on some of the criticisms which have

been leveled against Steiner’s model of mathematical explanation in math-

ematics. This choice is motivated not only by the lack of criticisms about

Steiner’s model of MEPP. The usefulness of these criticisms in the context

of MEPP is clear if we put forward the following observation: since Steiner’s

account of MEPP depends on his account of mathematical explanation in

mathematics, to block or to criticize the latter inevitably means to block or

to criticize his account of MEPP. My examination will skip, where possible,

the technical details and I will focus more on the general remarks and on

the moral of the criticisms. Since they are based on a more detailed testing

of Steiner’s model of explanation in mathematics, I will take into consider-

ation Resnik and Kushner’s [Resnik et al., 1987] and Hafner and Mancosu’s

[Hafner et al., 2005] criticisms. In the end, I will report Baker’s considera-

tions about the difficulties Steiner’s model of MEPP has in accounting for a

particular example of MEPP. For convenience sake, I will start each criticism

with a corresponding label: RK for Resnik and Kushner’s, HM for Hafner

and Mancosu’s and Bk for Baker’s.

(RK) In their 1987 paper [Resnik et al., 1987], Resnik and Kushner crit-

icized Steiner on various levels (ontological and methodological). Since their

analysis is essentially based on Steiner’s 1983 paper “Mathematical Realism”

[Steiner, 1983], I will begin by shortly illustrating some core-ideas from that
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paper. Although Steiner’s 1983 article is not explicitly devoted to expla-

nation, Steiner’s account of mathematical explanation in mathematics is an

essential ingredient of the discussion. Furthermore, the fact that this study

is balanced towards ontological issues provides an example of how the debate

concerning MEPP is linked to the ontological arena in philosophy of mathe-

matics.

In his 1983 paper Steiner endorses Quine’s argument that mathematical

objects exist because quantifying over them is indispensible in contemporary

science and he distinguishes mere existence (in Quine’s sense of being the

value of a variable) from two types of reality: ontic and epistemic. In what

follows here I will consider only the epistemic reality of mathematical ob-

jects, since it is this notion which is discussed by Steiner in connection with

explanation.

He starts his discussion by presenting his idea of “epistemic indepen-

dence”. For Steiner, an object is “real in the epistemic sense” if our epistemic

access to it is conceptually independent of the theory in which the object

has been initially postulated31. For instance, neutrinos were postulated in

order to account for energy missing from certain quantum interaction, and

only after they were detected via experiments. The experiments make sense

independently of the specific laws that led to the postulation of the physical

entities. Steiner goes on by claiming that an object is real in the epistemic

sense if it has epistemically independent descriptions: “what is real is what

is susceptible to independent description” [Steiner, 1983, p. 369].

By extending his discussion to the case of mathematical entities, he is

faced with the following problem: to show that two mathematical descrip-

tions refer to a same thing we can prove their equivalence, but what does it

mean for two or more mathematical descriptions to be independent? The no-

tion of independence for mathematical descriptions is thus defined by Steiner

by appealing to his theory of mathematical explanation in mathematics. The

31Regarding Steiner’s notion of ontic reality, it seems that Steiner regards an object as
real in the ontic sense just in case reference to it is not eliminable by paraphrase from the
language of science [Resnik et al., 1987, p. 144].
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definition amounts to the following: (I) two descriptions of a same mathemat-

ical object (for example π) are independent when we have a proof that they

are coreferential, but there is no explanatory proof (explanatory in Steiner’s

sense) that they are. If there exist two descriptions of a mathematical entity

and these descriptions are independent according to (I), then the mathemat-

ical entity described is epistemically real.

Now, recall the notion of characterizing property as defined above (section

1.2). What Steiner is suggesting here is that if we have a non-explanatory

proof of the coreference (i.e. a proof which does not appeal to any charac-

terizing property), then the separate descriptions are not connected through

essences and should be considered as independent. Hence his notion of ex-

planatory proof is regarded as suitable to distinguish between two kinds of

proofs of coreference in mathematics: “those which merely demostrate the

coreference and those which explain it” [Steiner, 1983, p. 376]. To have the

former and not the latter does guarantee the independence of the descrip-

tions (and thus the epistemic reality of some mathematical entity). As an

example, he considers the case of the famous formula eπi + 1 = 0.

Although π has a geometrical description as the ratio between the cir-

cumference of a circle to its diameter, we can obtain a separate analyti-

cal description of π, which is arg(−1) = π, through the “magic” identity

eθi = cosθ + sinθ 32. The coreference of the two descriptions (geometrical

and analytical) is established by the following deductive proof:

Proof. We start from number e defined as

lim
n→∞

(1 +
1

n
)n (1.8)

We can now consider that, using calculus, is it possible to show that:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ ... (1.9)

32Recall that arg(x) = y if and only if eyi = x.
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By introducing complex exponentiations in the expression above (we substi-

tute the imaginary iθ for x), we have:

eiθ = 1 + i
θ

1!
− θ2

2!
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
− ... (1.10)

= (1− θ2

2!
+
θ4

4!
− θ6

6!
+ ...) + i(θ − θ3

3!
+
θ5

5!
− θ7

7!
+ ...) (1.11)

Nevertheless, for real θ, the same techniques used for the expansion of ex

produce the following results:

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ ... (1.12)

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ ... (1.13)

Substituting the previous expressions we obtain the identity:

eiθ = cos θ + i sin θ (1.14)

Now, if θ = π, we have the analytical result (or description of π):

arg(−1) = π (1.15)

The proof we are faced with is a deductive proof which demonstrates the

coreference, but which does not explain it. Why? Steiner observes that Eu-

ler’s formula eiθ = cos θ + i sin θ which appears in the deductive structure

of the previous proof remains a mystery and “no explanatory proof of it has

been given” [Steiner, 1983, p. 378]33. This is why the previous proof must be

33Actually, Marcus Giaquinto has pointed out that “an explanation of the aptness” of
the Euler’s formula eiθ = cos θ+ i sin θ can be given [Giaquinto, 2005, p. 79]. In particular,
Giaquinto’s idea is that the “aptness” of the formula can be explained by presenting the
geometric significance of it: “Consider the point on the unit circle at angle θ (anticlockwise
from the unit vector on the x-axis). That point has coordinates 〈cos θ, sin θ〉. So it rep-
resents the complex number cos θ + i sin θ. Thinking of this as the vector from the origin
to the point 〈cos θ, sin θ〉, Euler’s formula tells us that eiθ is that vector. If we expand
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considered as non-explanatory. Thus the coreference of the two descriptions

is established by a non-explanatory proof and, according to criterion (I), the

descriptions are independent. Finally, from the independence of the two de-

scriptions of π (the geometrical and the analytical), Steiner asserts that π is

real in epistemic sense [Steiner, 1983, p. 376].

Resnik and Kusher’s criticism attacks Steiner’s notion of explanatory

proof and its use as an instrument to establish the epistemic reality of math-

ematical entities. In order to support their criticism, they offer two coun-

terexamples to Steiner’s model of explanation in mathematics:

(α) A proof of the irrationality of
√

2 which meets Steiner’s criteria of

explanatoriness but which, according to Steiner, does not explain.

(β) A particular proof of the intermediate value theorem which, according

to the authors, is explanatory but fails to meet Steiner’s criteria of

explanatoriness.

Concerning counterexample (α), recall that Steiner does not consider the

Pythagorean proof of the irrationality of
√

2 as explanatory because it de-

pends upon the crucial lemma that ‘a2 is divisible by 2 only if a is’ (I called

Lc such a lemma), and that lemma must be proved again in each case we

use another number as substitute for 2. Resnik and Kusher consider again

the Pythagorean proof and claim that, by adding a particular lemma, this

impediment is removed and Steiner’s criteria of explanatoriness are fulfilled.

More precisely, they consider ‘being the least integer x such that any integer

that x divides is also divisible by 2’ as characterizing property in the proof

[Resnik et al., 1987, p. 147]. This characterizing property allows us to pick

out the number 2 among all the positive integers. Observe that the statement

(or contract) the x and y coordinates of that vector by real magnitude r to r cos θ and
r sin θ, it is clear that the corresponding vector must also expand or contract by a factor
of r. This gives an immediate geometrical significance to the following trivial consequence
of Euler’s formula: reiθ = r cos θ + r sin θ. It tell us that reiθ is the vector with length
r at angle θ” [Giaquinto, 2005, p. 79-80]. Although providing a clear illustration of the
significance of the Euler’s Formula, however, this cannot be regarded as a proof of it.
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‘if a2 = 2b2 then 2 divides a’ is true for any positive integer that we substitute

for 2. Moreover, all but squares divide a2 only if they divide a (here we use

the crucial lemma Lc). By substituting any positive integer for 2, we have

therefore a variation of the characterizing property and a deformation of the

proof. Moreover, they claim that by deforming the proof in this way what

we reach is exactly the same conclusion/generalization reached by Steiner by

using the fundamental theorem of arithmetic: a2 is equal to nb2 only if the

number to be substituted in the place of n is a square. However, note that

the crucial lemma Lc is still used in the proof. Here is the key point: Resnik

and Kusher point out that, contrary to what Steiner maintained, this lemma

must not be proved again in each case, and this because it can be given in

the more general form (L∗):

Lemma L∗. If a = kn + i where 0 < i < k (i.e. k does not divide a) and k

is not a perfect square, then k does not divide a2

Proof of lemma L∗. We proceed by induction on a. We know that a2 =

(kn)2 + 2kni+ i2. So k divides a2 only if it divides i2. But k 6= i2, since k is

not square; so, applying the inductive hypothesis to i, k divides i2 only if it

divides i. But the latter is impossible since i < k 34.

Therefore, by using lemma L∗ and the mentioned characterizing property,

they offer a proof of the irrationality of
√

2 which meets Steiner’s criteria of

explanatoriness but which, according to Steiner, does not explain.

Let me now consider their counterexample (β), which will come out again

in Hafner and Mancosu’s criticism. Here Resnik and Kushner take into ac-

count the following version of the intermediate value theorem:

Theorem 1.4 (Intermediate value theorem). If a real valued function f is

continuous on the closed real interval [a, b] and if f(a) < c < f(b), then there

is an x in [a, b] for which f(x) = c.

The proof they give, which according to the authors is a modification of

a proof from [Rudin, 1953], runs as follows:

34The proof is given by Resnik and Kushner [Resnik et al., 1987, p. 147].
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Proof of theorem 1.4. Consider the set A of all the t in [a, b] for which f(t) <

c. This set contains a and is bounded from above by b; the real line is

continuous, then the set A has a least upper bound x with x ≤ b. Since f(x)

is continuous on [a, b], f(x) is defined. We will prove by contradiction that

f(x) = c.

Suppose that f(x) < c. Because f is continuous, we can pick a point y to

the right of x for which we have f(y) < c. But this contradicts the fact that

we have isolated all such points to the left of x.

Suppose now that f(x) > c. Then for each point t in [a, b] to the right of x

we have f(t) > c. Again, by the continuity of f it will be possible to find

a point y′ to the left of x such that for all t in [y′, b], f(t) > c. But this

contradicts the fact that x is the least upper bound of A with x ≤ b.

Resnik and Kushner consider this proof as explanatory [Resnik et al., 1987,

149]. However, they observe that nothing like Steiner’s criteria of explana-

toriness can be identified in the proof:

[...] neither the theorem nor our proof is known to be ‘deformable’

to yield genuinely new results. In addition, as clear as the proof is,

we find it hard to identify the characterizing properties on which it

depends. According to Steiner, they should characterize something re-

ferred to in the theorem. To what does the theorem refer? Intervals,

functions continuous on them and real numbers. The proof clearly

depends upon properties of each – e.g., that the function be continu-

ous on an interval-but none of these come close to characterizing any

particular function, interval or real number. Perhaps the theorem is

really about the class of real valued functions over the real numbers

drawn from the family of all classes of functions. This analysis is fa-

vored by the use of the same proof-idea in intermediate value theorems

about continuous functions on domains other than real intervals. Yet

for the proof to count as explanatory in Steiner’s sense it must make

plain how the theorem changes to new theorems as we move from the

class of continuous functions over real closed intervals to any other
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class of functions in the family. Nevertheless, the proof does not tell

us anything about discontinuous functions [Resnik et al., 1987, 149]

From their general discussion several considerations emerge. First of all,

when we test Steiner’s model of explanation on a proof we are faced with

a major problem: since Steiner leaves quite indefinite his notion of charac-

terizing property (“a property unique to a given entity or structure within a

family or domain of such entities or structures” [Steiner, 1978b, p. 143]), it

is not clear what we have to consider as “family of mathematical entities or

structures” in our test case. To put it in a different way: where is the fa-

mous characterizing property in the proof? Furthermore, a second problem

arises when we have to fix the limits of the proof deformation (recall the role

of deformability in Steiner, and his generalizability criterion C2). Let’s call

this latter problem the “deformability problem”. These considerations are

resumed by a more general criticism, which I will call the “matter of style

criticism”. Resnik and Kushner observe that:

Whether or not something is evident from a proof is relative to sub-

groups of the mathematical community, at best. A proof that explains

to a mathematical logician may be anything but evident to a topolo-

gist. Then there is the matter of the explicitness of the reference to a

characterizing property. That is a matter of style. [Resnik et al., 1987,

p. 146]

The “matter of style criticism” suggests then that the two authors do at-

tribute an active role to the context in the potential choice of a characterizing

property. Hence, if this criticism is right, Steiner’s attempt to “objectively”

capture the notion of explanatoriness in proofs would not work, because to

consider a proof as explanatory means to consider a proof as explanatory in a

context (a mathematical community, a classroom, a mathematical tribe living

in Amazonia). In other words: objectivity in explanation is lost! This intro-

duces us to the point of view of the two authors. For Resnik and Kushner

there is no objective distinction between explanatory and non-explanatory
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proof. In line with Van Fraassen’s pragmatic approach to explanation, which

I will present in the next chapter, their answer to the question “Are there ex-

planatory proofs?” is negative and the distinction between explanatory and

non-explanatory proofs can only be context-dependent [Resnik et al., 1987,

p. 153]35. The context-dependence is due to the fact that one proof can be

explanatory when given as an answer to a particular why-question raised by

a questioner (presumably, a mathematician) in a given context. On the other

hand, the very same proof can be discarded as non-explanatory by another

questioner who is interested in a different why-question concerning the same

result36.

It is evident that, according to Resnik and Kushner’s point that there is

not explanation simpliciter (and, if there is, Steiner’s model is not able to

capture it), Steiner’s account of explanation within mathematics should be

rejected37. Consequently, his account of the epistemic reality of mathemati-

cal entities is in trouble, and the same holds for his model of mathematical

explanation of physical phenomena.

In the final part of their paper, they add a comment on the fact that

Steiner considers parts of mathematics (for instance, analysis and geometry

in his example concerning π) as independent38. For Steiner this separability of

35It is very curious to observe, that, even if they repeat their resistance to believ-
ing in the existence of proofs which ‘explain’ (“We have doubts that any proof explain”
[Resnik et al., 1987, p. 146]), they claim that their examples (for instance, the interme-
diate value theorem) are examples of ‘explanatory’ proofs. This point will be considered
again in Hafner and Mancosu’s criticism.

36For instance, regarding the Pythagorean theorem, a questioner might be interested in
why the Pythagorean theorem holds only for right triangles. And the proof provided by
her friend, while correct, might not contain that kind of information.

37Resnik and Kushner doubt the existence of explanatory proofs in general
[Resnik et al., 1987, p. 146], denying an objective distinction between explanatory and
non-explanatory proofs. Furthermore, they claim that “Mathematicians rarely describe
themselves as explaining” [Resnik et al., 1987, p. 151]. However, as observed by Hafner
and Mancosu, “mathematicians often describe themselves and other mathematicians as
explaining. And their judgments concerning explanatory vs non-explanatory proofs (and
other varieties of explanation in mathematics as the case may be) has to figure as the basic
evidence, however subjective or context dependent they may be. Claims to the effect that
certain proofs are explanatory come from within mathematics not from philosophers of
mathematics” [Hafner et al., 2005, p. 223-224].

38After having given his example of epistemic reality of π, Steiner writes: “Assuming

56



mathematics into conceptually independent compartments is important be-

cause it is on this divisibility that his notions of independent descriptions and

epistemic realism are grounded. However, as Resnik and Kushner observe,

the history of mathematics shows us that boundaries between mathematical

disciplines are not likely to exist:

While we cannot establish conclusively that holism in mathematics is

correct, it seems to us that one need only reflect on such disciplines

as analytic geometry, algebraic topology, algebraic geometry or the

grand foundations such as set theory or category theory to see how

implausible it is that fixed conceptual boundaries between mathemat-

ical disciplines exist. (Recall, too, that analysis has its historical and

conceptual roots in geometry and that its arithmetization gave it ‘in-

dependent’ foundations.) [Resnik et al., 1987, p. 156]

Let me conclude this illustration of Resnik and Kushner’s criticism by

considering their last remark. Consider Benacerraf’s paper “What Numbers

Could Not Be” [Benacerraf, 1965]. In that study Benacerraf points out that

the natural number sequence is isomorphic to any (recursive) mathematical

progression. Furthermore, no mathematical argument (and thus no explana-

tory proof) can be used to decide if it is identical (or not) to one of these

progressions. Hence, according to Resnik and Kushner, since those remarks

seem to suggest us that the natural number sequence could be described in-

dependently from this or that progression, according to Steiner’s criterion

of independence it follows that the natural number sequence is epistemically

real39. On the other hand, they observe, our notion of independence depends

that geometry and analysis are suitably ‘independent’, our criterion thus yields the reality
of π” [Steiner, 1983, p. 376].

39Let me note, however, that Resnik and Kushner reading of Steiner’s criterion of inde-
pendent descriptions does not make justice to Steiner’s original idea (at least in the context
of Benacerraf’s considerations). Recall that, for Steiner, two descriptions of a same math-
ematical object are independent when we have a proof that they are coreferential, but no
explanatory proof that they are. In the case of the natural number sequence, and in the
context of Benacerraf’s 1965 paper, we do not have a proof that shows the coreferential-
ity of the different progressions. Therefore they cannot be considered independent à la
Steiner. On the other hand, although I consider this particular point raised by the authors
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upon a previous division of mathematics into separate theories (of mathe-

matics), and thus the problem of holism occurs again:

[...] the so-called independence of the descriptions in question is depen-

dent upon a prior division of mathematics into separate theories. The

claim that the natural number sequence is independently described by

T1, T2, or by geometry or set theory presupposes that these theories

are independent parts of mathematics. We are back to the holism

issue again and to the problem that a mere reformulation of a branch

of mathematics will shift the lines of division within mathematics.

[Resnik et al., 1987, p. 156-157]

(HM) Let’s now consider a second criticism. In their [Hafner et al., 2005],

Hafner and Mancosu consider Resnik and Kushner’s counterexamples as an

insufficient challenge of Steiner’s account of explanation in mathematics. The

crucial point is that Resnik and Kushner do not offer a justification for re-

garding their examples as explanatory. They consider a particular proof of

the intermediate value theorem as “explanatory” [Resnik et al., 1987, p. 147,

149], but their claim is not grounded on any declaration coming from within

the practice of mathematicians. On the other hand, Hafner and Mancosu’s

request is that:

For counterexamples to Steiner’s theory to carry real weight, they

would have to be much more closely related to mathematical practice

[Hafner et al., 2005, p. 223]

In other words, Hafner and Mancosu’s request is a demand for explanatory-

evidence coming from the practice of mathematicians. This is why, to assess

Steiner’s account of explanations in mathematics, they choose as test-case a

proof recognized as explanatory in mathematical practice. This proof comes

as lacking in power to face Steiner’s view, their observation is particularly interesting be-
cause explores the question of the divisibility of mathematics into ‘independent’ domains
(something Steiner seems to be very sympathetic to!), and I will refer to this question at
the end of the next chapter.
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from the work of Alfred Pringsheim in the theory of infinite series and con-

cers Kummer’s test for convergence40.

Pringsheim considered as explanatory one particular proof of Kummer’s

test, then this proof should be considered a bona fide example in order to

test Steiner’s account of explanation in mathematics. Without entering in

the technical details of Hafner and Mancosu’s assessment of Steiner’s account

in this context, something which would take us too far from the present dis-

cussion, I report here some of their conclusions. Their general verdict is

summed up by the following quotation:

[Hafner and Mancosu] argue that the explanatoriness of the proof of

the result in question cannot be accounted for in Steiner’s model and,

more importantly, this is instrumental in giving a careful and detailed

scrutiny of various conceptual components of the model. [Mancosu, 2008b,

p. 143-144]

The justification for such a claim comes from the following considerations.

According to the authors, Steiner’s definition of characterizing property is

inapplicable in the context of the considered proof of Kummer’s test, and then

fails in considering this proof as explanatory (while in mathematical practice

it is considered as such). The inapplicability of the notion of characterizing

property is due to the fact that nothing like Steiner’s characterizing property

can be singled out in Pringsheim’s proof:

All ‘entities’ in Kummer’s test are generic, no concrete objects are

mentioned in it (apart from the number 0 of course, but the proof is

clearly not based on any characterizing property of 0). This generality

makes it hard to come up with a property that uniquely determines

some entity within a family of them [Hafner et al., 2005, p. 230]

Furthermore, they observe how the only potential candidate as character-

izing property must be ruled out because, contrary to Steiner’s desideratum,

40Kummer’s test gives very powerful sufficient conditions for convergence or divergence
of a positive series. For a presentation of the test see [Tong, 1994].
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it does not pick out any particular entity or structure within a family or

domain of entities.

Naturally, this ‘lack of characterizing property’ blocks also his second cri-

terion, C2 (generalizability), because the latter presupposes the former.

The impossibility of detecting a characterizing property is connected to

a more general point raised by the authors. Recall Steiner’s definition (the

only one he offers) of characterizing property: a property unique to a given

entity or structure within a family or domain of such entities or structures.

Without having a definition of ‘family’, ‘entity’, ‘structure’, mentioned in the

theorem, Steiner’s theory is incomplete and vague, and leaves us with a deep

sense of dissatisfaction. We are unable to exactly pick out the characterizing

property that Steiner had in mind, and then it is hard to assess his theory

of explanation, or even propose some refinement to it [Hafner et al., 2005, p.

232]. Thus, the moral of the present criticism seems to be the following: our

satisfaction in mathematics (Pringsheim’s consideration about the explana-

toriness of one proof of Kummer’s test) leaves us with a deep dissatisfaction

towards Steiner’s model of explanation in mathematics.

To conclude, both criticisms above point to a major defect of Steiner’s

account of explanation in mathematics: without any constraint on what a

‘family’ (or ‘domain’) of mathematical entities is, the choice of characterizing

property in a proof is left quite open and is subject to arbitrariness. More-

over, if we are interested in MEPP, this unsolved question also undermines

Steiner’s model of MEPP, since the latter is based on Steiner’s account of

explanations within mathematics.

(Bk) Finally, let me consider Baker’s [Baker, 2009]. To my knowledge,

this is the only study within the philosophical literature on explanation in

which Steiner’s model of MEPP is object of some sort of testing. This is why

it is important to consider it here. Unfortunately, as I said at the beginning

of this section, the assessment proposed by Baker is very general and it can-

not be considered a solid testing of Steiner’s model.

To test Steiner’s model of MEPP Baker takes a case from evolutionary
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biology. This example, which is considered by Baker as a genuine case of

MEPP and which is presented by him in another paper [Baker, 2005], will be

discussed in the next chapter, in section 2.1. However, let me introduce here

the general details of the test-case and the explanation regarded by Baker as

a genuine mathematical explanation in science.

The specific biological phenomenon to explain concerns the life-cycle of

an insect called periodical cicada. It has been noted that three species of

periodical cicada share the same unusual life-cycles, 13 or 17 years (which

are prime numbers). The question raised by biologists is: why are these life

cycles prime? An explanation for why prime periods are evolutionary ad-

vantageous is given by biologists and is based on some ecological facts, some

general biological laws, but also on a number theoretic result [Baker, 2005,

p. 233]. More precisely, the number theoretic result which participates in

the cicada explanation is a consequence of two lemmas. This amounts to

saying that the appeal to mathematics, namely the two number theoretic

lemmas, is essential to the overall explanation of the biological phenomenon.

Moreover, biologists seem to welcome this explanation [Baker, 2009, p. 617].

This is why the cicada explanation is, according to Baker, a genuine case

of mathematical explanation in science. There is, of course, more to add

about the cicada case and the structure of what Baker considers as a genuine

explanation. For the example is discussed by Baker in a very general way in

the context of Steiner’s model, however, the previous broad presentation is

largely sufficient41.

Let’s now turn to Baker’s test of Steiner’s model of MEPP. Furthermore,

keep in mind Steiner’s account of MEPP discussed in the previous sections.

Baker assumes that the cicada-explanation is a genuine case of MEPP. There-

fore, if Steiner’s model is correct, it should “recognize” the explanatory char-

acter of this test case. However, according to Baker, Steiner’s theory faces

41Again, I will give a more detailed analysis of Baker’s example in the next chapter.
When [Baker, 2009] was published the general structure of this dissertation was already
settled. This is why I do not offer here a detailed illustration of the cicada example but
I remit it to the next chapter. I think, however, that the short presentation given here is
sufficient to understand Baker’s criticism of Steiner’s model.
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two difficulties to accomplish this task. A first difficulty is pointed out in the

following passage:

If we apply the “Steiner test” to the periodical cicada example then

what is its verdict? We immediately run up against the first problem

with the test, which is that it depends on a prior grasp of the notion

of “internal” mathematical explanation (of mathematical truths), and

this is something for which there is no widely accepted philosophical

account [Baker, 2009, p. 623]

Observe that Baker refers to “internal mathematical explanation” as to

indicate mathematical explanation within mathematics. Moreover, it is easy

to recognize the criterion CMEPP (given in section 1.3) behind what Baker

calls “Steiner test”. To perform a “Steiner’s test” amounts to checking the

applicability of CMEPP to the cicada case.

In this passage Baker points out that that there is no general account

for mathematical explanations within mathematics. This is something which

is true, and which might be pointed out also in the context of models of

MEPP. However, I do not see how this can be a problem for Steiner’s account

of MEPP, for as we have seen in the previous sections Steiner does offer

his own model of mathematical explanation within mathematics. Rather

then, if there is a difficulty for Steiner’s model in accounting for the cicada

case, this difficulty should be found by testing Steiner’s account of ‘internal

mathematical explanation’ (as Baker calls it). To perform a Steiner’s test

on the cicada example is to check the applicability of CMEPP , but CMEPP

requires that the mathematical part of the explanation (in this case the two

lemmas) be explanatory according to C1 and C2. To be more precise, we have

to check if the proofs of the two lemmas which participate in the explanation

are judged explanatory by C1 and C2. It seems that Baker is conscious of the

weakness of his first observation against Steiner. This is why he reinforces

his criticism by adding a second observation:

If we rely here instead on intuitions then it would seem that the ci-

cada explanation will probably not count as genuinely mathematical.
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The key mathematical results are the following two lemmas: [...] The

proofs of these two lemmas, while relatively elementary, were not given

in the paper; instead readers were referred to Edmund Landau’s Ele-

mentary Number Theory [Landau, 1958]. My own feeling, on review-

ing the proofs, is that neither is particularly explanatory. This may in

part be because the results established by the lemmas in question are

so basic: a few moments’ reflection shows why they must be true,even

without constructing a formal proof [Baker, 2009, p. 623]

Also in this case, however, Baker’s remarks are too vague to block Steiner’s

account. Baker writes that his “feeling, on reviewing the proofs, is that nei-

ther is particularly explanatory”. On what grounds is Baker rejecting the ex-

planatory character of these proofs? More important for a testing of Steiner’s

account, I think, is the question: Are these proofs explanatory in Steiner’s

sense? What should be checked here is Steiner’s account of mathemati-

cal explanation in mathematics. Nevertheless, in Baker’s discussion there is

nothing like a testing of Steiner’s criteria C1 and C2.

After the two general observations above, Baker writes:

I conclude that the Steiner test pronounces (albeit weakly) against

the cicada explanation being a genuine mathematical explanation of a

physical phenomenon. [...] Contra Steiner, I would argue that the ev-

idence from scientific practice indicates that the internal explanatory

basis of a piece of mathematics is largely irrelevant to its potential

explanatory role in science. [Baker, 2009, p. 623]

Here Baker remarks that scientific practice does provide an evidence for

the fact that the explanatory character of a piece of mathematics within

mathematics does not affect the explanatory character of mathematical ex-

planations in science. However, and I will mention this just as an aside here,

there is no consensus on the fact that the intuitions from the practice of

biologists do provide such “evidence” [Saatsi, 2011, p. 153].

Let me conclude by saying that, although relevant because it represents

the unique attempt to test Steiner’s model of MEPP, Baker’s paper does not
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provide any detailed analysis or solid testing of Steiner’s theory. Morever,

I think that my remarks above show that Baker pronounces “albeit weakly”

against Steiner’s account. In Baker’s discussion there appears no testing of

Steiner’s model. And such a testing would require: an identification of the

physical (or biological, in this case) principles which links the mathematical

ingredients of the cicada-explanation (the lemmas) with the biological part

of the explanation; a check of criteria C1 and C2 on the proofs of the lemmas.

Without such an investigation, it is hard to see how Steiner’s model of MEPP

might, or might not, account for this explanation.
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Chapter 2

Is pragmatics enough?

The aim of this chapter is to give an example from which it emerges the

difficulty for two classical theories of scientific explanation in accounting for

MEPP. In order to do that, I will consider Baker’s paper “Are there genuine

mathematical explanations of physical phenomena?” [Baker, 2005] as a start-

ing point for a discussion (advanced, but not elaborated further in Baker’s

paper) of the problem of extending the D-N model and Van Fraassen’s theory

of explanation (the ‘pragmatic account’) as to include MEPP.

In my discussion I will follow this order: after having introduced Baker’s

2005 paper, together with his test case of MEPP and his considerations about

the possibility of extending the two models, I will shortly consider the D-N

model in the context of MEPP and then I will move to a deeper and more

inclusive analysis of the pragmatic account. I will give a concise summary

of Van Fraassen’s theory of explanation, including some important criticisms

(Salmon and Kitcher’s criticism for Van Fraassen’s account, and David Sand-

borg’s criticism for an application of Van Fraassen’s theory to mathematical

explanations in mathematics), and a defense of it endorsed by Alan Richard-

son. Finally, I will return to Baker’s case in order to analyze the difficulties

of the pragmatic account as extended to cover mathematical explanation

of physical phenomena (what I will indicate as PET: Pragmatic Extended

Theory) and the possibilities to improve such an account in order to include
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mathematical explanations of physical phenomena. In particular, I will stress

that to “save” Van Fraassen’s account in the case of mathematical explana-

tions (within mathematics or for physical phenomena) means to abandon

some core ideas which stand behind the why-question strategy. These con-

siderations will block Baker’s positive idea about the possibility of using a

pragmatic account in his analysis of MEPP.

The choice of this line of reasoning will have a twofold consequence: it will

show how a classical theory of scientific explanation is in trouble when faced

with a case of MEPP and, second, it will stress the importance of elaborating

a more specific philosophical strategy as to account for cases of MEPP (such

as Baker’s) where traditional accounts of scientific explanation fail.

In presenting Sandborg’s criticism, I will justify my choice to consider

Van Fraassen’s account among the WTA approaches to explanation.

2.1 Baker’s test case

Baker’s paper “Are there genuine mathematical explanations of physical

phenomena?” [Baker, 2005] is structured along three interconnected chal-

lenges: show the existence of a case of ”genuinely mathematical explanation

of a physical phenomena”in order to give new insights into the Colyvan-Melia

debate1, offer an indispensability argument which does not rely on holism and

1The debate between Mark Colyvan and Joseph Melia, concerning the right indis-
pensability of mathematics in science, took place in the review Mind along three papers
([Melia, 2000], [Melia, 2002] and [Colyvan, 2002]). More precisely, both the authors agree
that the challenge for the realist is to show that there are convincing scientific examples in
which positing mathematical abstracta “results in an increase in the same kind of utility
as that provided by the postulation of theoretical entities” [Melia, 2002, p. 75]. For Melia
and Colyvan, ‘explanatory power’ is an example of such a kind of utility, thus explanation
has a role of key importance in this debate. Observe that, in his famous Science Without
Numbers [Field, 1980], also Hartry Field points out that if the realist can find examples
where mathematical posits are indispensable to explanations of physical phenomena, we
should believe in the existence of mathematical posits via inference to the best expla-
nation (IBE) [Field, 1980, p. 14-20]. An “Enhanced Indispensability Argument”, which
explicitly refers to the indispensable explanatory power of mathematics in scientific theo-
ries as an instrument to infer the existence of mathematical entities, was discussed during
the workshop Explanation, Indispensability of Mathematics, and Scientific Realism work-
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which shows how mathematics is indispensable to science in the right way

and, third, support the platonist position with this argument. While the au-

thor does not develop a model for MEPP, and his attention is more focused

on the implications that the existence of MEPP can have on the platonism-

nominalist debate, his discussion of what counts as a “genuine mathematical

explanation” is based on the assumption of some accounts of explanation.

Baker presents a case study from evolutionary biology. The specific bi-

ological phenomenon concerns the life-cycle of an insect called periodical ci-

cada. Why is this phenomenon so interesting? The particularity lies in the

fact that “three species of cicada of the genus Magicicada share the same

unusual life-cycles”, 13 or 17, which are prime numbers.

[...] three species of cicadas of the genus Magicicada share the same

unusual life-cycle. In each species the nymphal stage remains in the

soil for a lengthy period, then the adult cicada emerges after 13 years

or 17 years depending on the geographical area. Even more strikingly,

this emergence is synchronized among the members of a cicada species

in any given area. The adults all emerge within the same few days,

they mate, die a few weeks later and then the cycle repeats itself.

[Baker, 2005, p. 229]

Magicicada species emerge synchronously over a few weeks of the spring in

each local population on scheduled years in eastern North America ([May, 1979],

[Williams, 1995]). There are six species of periodical cicadas, three with a

17-year cycle and three with a 13-year cycle. The three species in each life-

cycle group are distinctive in size, color, and song. The 17-year cicadas are

generally northern, and the 13-year cicadas southern with considerable over-

lap in their distribution (both life-cycle types may occur in the same forest).

While some features of the life-cycle could be explained by referring to eco-

logical constraints (great duration of the cicada life-cycle and presence of two

separate life-cycle durations within each cicada species in different regions)

shop (Leeds, January 2009). I will come back to these issues later in this dissertation, in
sections 5.2.1 and 8.5.
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and evolutionary biological laws (the periodic-syncronized emergence of adult

cicadas), the prime-numbered-year cicada life-cycle is quite mysterious and

needs a satisfactory explanation [Goles et al., 2001, p. 33].

Why are life-periods prime? Two explanations based on the advantage

of prime cycle periods have been offered: one based on avoiding predators

[Goles et al., 2001], and the other on the avoidance of hybridization with

other species ([Cox et al., 1998], [Yoshimura, 1997]). The former is based

on the observation that the particular life-periods of cicadas avoid overlap

with the life-periods of other periodical organisms and are therefore beneficial

whether the other organisms are predators. The latter is based on the obser-

vation that these life-periods avoid overlap with different subspecies and are

therefore beneficial since mating between subspecies would produce offspring

that would not be coordinated with either subspecies. Both the explanation

consider then that the particular life-periods 13 and 17 do minimize overlap

with nearby (or lower) life-periods of other periodical organisms. In a partic-

ular ecosystem, the life-periods of cicadas are limited, and then the overlap

with the life-period of other organisms must be minimized within a particular

range (for instance, the 17-year cicadas are limited by biological constraints

to periods from 14 to 18 years)2.

Baker claims that both these explanations use a number theoretic theo-

2To see how a particular period length x minimizes the intersection with other period
lengths in a specific range (fixed by biological constraints) is sufficient to find the least
common multiple (LCM) for each pair (period length, period length) and observe that the
LCM is always greater for the pairs which comprise x. In the context of cicadas, the LCM
amounts to the number of years between successive intersections of the cicada life-cycle
with the life-cycle of another organism (a predator or a subspecies of cicada). For instance,
if we consider the periods 14,15,16,17 and 18, we will find that the LCM for the pairs one
member of which comprises the number 17 will be always greater than the LCM for the
pairs which do not comprise 17: LCM(16,17)=272, LCM(16,18)=144, LCM(14,17)=238,
LCM(15,16)=240, LCM(14,18)=126, LCM(15,18)=90, LCM(15,17)=255, etc. Juha Saatsi
has observed how this result can be found by playing with some sticks and assuming that
each stick represents a period of time: “Take a bunch of sticks of 14, 15, 16, 17, and 18
cm. You’ll need fewer than 20 sticks of each kind. Lay down sticks of each kind one after
another to find the least common multiple (LCM) for each pair (viz. the length at which
the two lines comprising 14 cm and 15 cm sticks, say, coincide). You’ll soon find out that
the least common multiple is almost always clearly longer for the pairs one member of
which comprises 17 cm sticks” [Saatsi, 2011, p. 8].
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rem (“prime periods minimize intersections compared to non-prime periods”)

as an essential element in giving the explanation for why is advantageous for

the cicada to have such a prime life-cycle (17 or 13 years).

The explanation makes use of specific ecological facts, general bi-

ological laws, and number theoretic result. My claim is that the

purely mathematical component is both essential to the overall ex-

planation and genuinely explanatory on its own right. In particular

it explains why prime periods are evolutionary advantageous in this

case [Baker, 2005, p. 233]

In particular, for Baker the structure of the explanation common to

[Goles et al., 2001] and [Cox et al., 1998] is given by the following 5-steps

argument:

(1) Biological law: Having a life cycle period which minimizes intersection

with other (nearby/lower) periods is evolutionarily advantageous.

(2) Number theoretic theorem: prime periods minimize intersection (com-

pared to non-prime periods)
————————————————————————————————–

(3) Mixed biological / mathematical law: Hence organisms with periodic

life-cycles are likely to evolve periods that are prime.

Combining the previous result (3) with the following

(4) Ecological constraint: Cicadas in ecosystem type, E, are limited by bio-

logical constraints to periods from 14 to 18 years.

we obtain the prediction:

(5) Hence cicadas in ecosystem type, E, are likely to evolve 17-years periods3.

Let me elucidate premise (2). Two numbers are said to be ‘coprime’ if

their greatest common factor is 1 (for instance, the greatest common factor

of 9 and 17 is 1, then they are coprime). Consider now the following two

lemmas [Landau, 1958]:

3The same argument holds for cicadas having a life-cycle period of 13 years. As may
be expected, in this case the ecological constraint (4) will be different.
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L1 The least common multiple of m and n is maximal if and only if m and

n are coprime.

L2 A number m is coprime with each number n < 2m, n 6= m if and only

if m is prime.

The number theoretic result which participates in the cicada explanation

(or, better, which participates in the two explanations in terms of predators

and hybridization) is a consequence of these two lemmas. It is very simple to

see why. The first lemma says that the intersection frequency of two periods

of length m and n is maximized when they are coprime. The second lemma

says that two numbers m and n, where n < 2m and n 6= m, are coprime only

if m is prime. Consider now the explanation based on avoiding predators.

Predators are assumed to have relatively low cycle periods (for instance, pe-

riod m). If we use L1 together with L2, we have that for a given prime p,

and for any pair of numbers n and m both less than p, the least common

multiple of p and m is greater than the least common multiple of n and m. In

other words, prime numbers maximize their least common multiple relative

to all lower numbers. To read this in the context of cicada amounts to saying

that a prime life-period (for instance, 17) maximizes the number of years

between successive intersections with the life-cycle of predators with lower

period lengths. From the same lemmas it follows also that prime numbers

maximize their LCM relative to ‘nearby’ numbers, a situation which corre-

sponds to the case in which a prime life-period maximizes the number of

years between successive intersections with the life-cycle of subspecies with

similar period lengths.

Thus the number theoretic result “prime periods minimize intersection

(compared to non-prime periods)” is essential to the structure of the general

explanation (which makes also use of specific ecological facts and general bio-

logical laws) and answers to the particular question: ”Why are prime periods

evolutionarily advantageous?”.

Until now Baker has only claimed that “the application of mathematics

yields explanatory power” [Baker, 2005, p. 233]. Furthermore, for him the
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fact that some biologists accept the explanation which relies on the concept of

primeness (and then on the number theoretic result which appears in premise

(2)) does provide an evidence for the fact that mathematics does play an ex-

planatory role in the present case4. However, he has not showed where this

explanatory power comes from, namely he has not provided or adopted an

account of explanation. This issue is raised by Baker in part 3 of his paper,

titled “Is the cicada example a genuinely mathematical explanation?”.

Let’s focus our attention on the term ‘genuine’. What does Baker mean

with this term? He presents three necessary conditions for a MEPP to be gen-

uine: (A) the application be external to mathematics, (B) the phenomenon

must be in need of an explanation, and (C) the phenomenon (primeness of

the life-cycle of the cicadas) must have been identified independently of the

putative explanation (explanation involving the mathematical theorem about

primeness).

The last condition requires that the mathematical component involving

primeness must not be used as to find a phenomenon that fits exactly for

our case, because in this case we would have a prediction and not a genuine

explanation. As both conditions (A) and (B), Baker affirms that also this

condition is fulfilled in the present case of cicada, because the phenomenon

of the 13 and 17 years life-cycles for the cicada was well-known before the

developement of number theory as a independent branch of mathematics5.

4This claim is made more explicit in [Baker, 2009]. He writes: “The way biologists
talk and write about the cicada case suggests that they do take the mathematics to be
explanatory, and this provides good grounds, at least prima facie, for adopting this same
point of view” [Baker, 2009, p. 625].

5Let me note that, although periodical cicadas were discovered by colonists during
the XVIIth century, number theoretical results are already presents in Euclid’s Elements.
In particular, in Book VII Euclid presents a method to find the greatest common factor
or divisor of two numbers (the procedure is now called “Euclidean algorithm”). If the
algorithm ends in 1, the original numbers are coprime, i.e. their greatest common factor
is 1. While a modern proof appears in textbooks such as Landau’s Elementary Number
Theory [Landau, 1958], mentioned by Baker, the fact that the intersection frequency of
two periods of length m and n is maximized when they are coprime is an implicit result
of Euclid’s algorithm. On the other hand, to show that prime numbers maximize their
least common multiple relative to lower and nearby numbers and are then optimals for
the present case requires a further step; the required result is contained in lemma L2.
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While satysfying the ‘genuineness’, the foregoing remarks do not offer a

satisfactory answer to our complete question “Is the cicada example a gen-

uinely mathematical explanation?”. What remains to be answered is: does

the example constitue a genuinely mathematical explanation (for the physi-

cal phenomenon)? In order to check this, we need to assume an account of

explanation. And this is what Baker does. In his words:

What needs to be checked in the cicada example, therefore, is that

the mathematical component of the explanation is explanatory in its

own right, rather than functioning as a descriptive or calculational

framework for the overall explanation. This is difficult without having

in hand some substantive general account of explanation. The philo-

sophical analysis of explanation is itself a thorny issue (and not one

we shall attempt to settle here), but it may be useful to canvas the

three leading contemporary philosophical accounts of explanation -the

causal account, the deductive-nomological account, and the pragmatic

account- to see if any of them can fruitfully be applied in the present

context. [Baker, 2005, p. 234]

Surprisingly, in considering a case of mathematical explanation in science

Baker does not test the application of a specific theory of MEPP such as

Steiner’s6. He considers three general models of scientific explanation: the

causal model, the D-N model and Van Fraassen’s pragmatic model.

The causal account is rejected as a possible account for MEPP because of

its incompatibility with any genuine mathematical explanation [Baker, 2005,

p. 234]. Of course, behind the use of the term “causal” there is the implicit

adoption of a particular account of causal relation. However, limiting my con-

siderations to standard theories of scientific explanation, here I consider that

Baker is referring to the sense of causality as expressed by traditional views

such as that put forward by Wesley Salmon in his Scientific Explanation and

6At the end of the previous chapter I have showed how Baker has recently proposed
an assessment of Steiner’s model on his cicada-case in his [Baker, 2009], although that
assessment is largely inadequate to test and even criticize Steiner’s account.
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the Causal Structure of the World [Salmon, 1984a]7. Without entering in

the details of this account (see [Salmon, 1989] or [Salmon, 1984a] for a com-

plete discussion), this analysis of causation is clearly inapplicable in cases of

MEPP such as the cicada’s example8. On the other hand, Baker claims that

the deductive-nomological account and the pragmatic account “both support

the claim that the cicada case study is an example of a genuinely explana-

tory application of mathematics to science” [Baker, 2005, p. 235]. Although

he does not further substantiate this claim, I take it as starting point for a

discussion of these models (and in particular the second) in the context of

MEPP. In the next section I will focus on the deductive-nomological model.

2.2 Deductive-nomological account and MEPP

In the deductive-nomological model (D-N model) proposed by Carl Hempel

and Paul Oppenheim in their famous 1948 paper “Studies in the Logic of Ex-

planation” [Hempel et al., 1948], the explanation of a phenomenon is given

7Salmon’s idea of what a causal process consists in is based on Reichenbach’s “mark
criterion”: a process is causal if it is capable of transmitting a “mark”, i.e. a local modifi-
cation in the process [Reichenbach, 1958, p. 136]. According to Salmon, causal processes
are dinstinct from pseudo-processes (as shadows or moving spots of light on walls) which
are not able to transmit marks (i.e. information) [Salmon, 1989, p. 107-111].

8A different analysis of causation (more precisely, a sketch of a counterfactual theory of
causation), which does not use Salmon’s link between causal processes, has been proposed,
for instance, by Philip Kicther: “I suggest we can have causation without linking causal
processes, and hence causal relations among events at which very peculiar interactions
occur. What is critical to the causal claims seems to be the truth of the counterfactuals,
not the existence of the processes and the interactions” [Kitcher, 1989, p. 472]. For a
pioneer counterfactual theory of causation see [Lewis, 1973], while for recent developments
see [Collins et al., 2004]. The problem of causation was seriously addresed by David Hume
in his Enquiry concerning Human Undersanding [Hume, 1999]. Section IV, part 1, and
section VII, parts 1-2, contain his central thoughts on causation and are an attempt to
answer the following question: “What is the foundation of all conclusions from experience?”
[Hume, 1999, p. 113]. Hume concludes that it is only by repeatedly observing associated
events that we can establish the existence of causal relations. According to him, we cannot
find a physical connection between the cause and the effect; the connection does not exist
in the physical world outside of our own minds, and the relation between cause and effect
is custom and habit (in other words, belongs to the psychological domain and not to the
physical world). For an abridged discussion of Hume on causation see [De Pierris, 2002],
while for a survey of contemporary theories of causation see [Dowe, 2008].
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C1, C2, ... , Ck    Statements of antecedent conditions

L1, L2, ... , Lr     General Laws

E               Description of the empirical 
                   phenomenon to be explained

 

}
}

Explanans

Explananandum

{
Logical

Deduction

Figure 2.1: Schema summarizing the D-N model.

in terms of a logical relation between a class of sentences (explanans) and

a singular sentence (explanandum). A phenomenon is explained when we

are able to deduce a statement (the explanandum E), which describes the

phenomenon, from some statements (the explanans) which include initial

conditions Ck and law-like generalizations Lr (see Figure 2.1)9. Moreover,

in order for the proposed explanation to be sound, its constituents have to

satisfy certain conditions of adequacy, which may be divided into logical and

empirical conditions [Hempel et al., 1948, p. 137]:

• Logical conditions of adequacy:

R1 The explanandum must be a logical consequence of the explanans.

R2 The explanans must contain general laws, and these must actually be

required for the derivation of the explanandum and use no accidental

generalizations.

R3 The explanans must have empirical content: that is, it must capable,

at least in principle, of test by experiment and observation.

• Empirical condition of adequacy:

R4 The sentences constituting the explanans must be true.

Two classical counterexamples undermine the claim that the D-N model

provides sufficient conditions for successful scientific explanation. They are

9Feyerabend has called this the “principle of deducibility”: explanation is achieved by
deduction in the strict logical sense [Feyerabend, 1962, p. 30].
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important for what follows, so I will shortly introduce them here.

The first problem concerns the so called explanatory asymmetries (see

[Bromberger, 1963] and [Bromberger, 1966]). Explanatory asymmetries ap-

pear when we have pairs of deductively valid arguments which rely on the

same law but which differ radically in explanatory potential. The classical

example is that of the flagpole and the shadow. If we consider a flagpole

and its shadow, from informations about the height of the flagpole, the angle

θ it makes with the sun plus laws describing the rectilinear propagation of

light, we can deduce the length of the shadow. This amounts to a reasonable

explanation of the length of the shadow. Nevertheless, the deduction is per-

fectly legitimate, via the same laws and the same observation on the angle θ,

the other way around. But here we have a problem. The problem with this

second derivation, in the context of explanation, is that it seems nonsense to

say that the length of the shadow explains the height of the flagpole (i.e. it is

difficult to regard this as an explanation of why the flagpole has that partic-

ular height). Nevertheless, the D-N model considers as perfectly legitimate

both directions of the explanation, thus lacking in resources to discriminate

the good explanation.

A second problem derives from examples of explanatory irrelevances, i.e.

cases where the logical derivation can satisfy the D-N criteria but it should be

considered a faulty explanation because it contains irrelevancies other than

those associated with the directional features of explanation. A well-known

example is given by Wesley Salmon [Salmon, 1971, p. 34]: (L) All males who

take birth control pills regularly fail to be pregnant; (C) Mario Rossi is a

male who has been taking birth control pills regularly; (E) Mario Rossi fails

to be pregnant. Despite the argument satysfies the requirements of the D-N

model, it would be quite strange to consider (L) and (C) together as an ex-

planation of (E).

The previous counterexamples focus on the role of causal considerations

in explanation (the height of the flagpole causes the length of its shadow,

and not the converse, while taking birth control pills does not cause Mario’s
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failure to get pregnant). Moreover, they show that if we want to preserve the

D-N model we have to add to nomic expectability, i.e. “expectability on the

basis of lawful connections” [Salmon, 1989, p. 57], some other independent

feature X in order to account for directional features of explanation and en-

sure the explanatory relevance that is missing in the birth control example10.

A third and more radical counterexample to the D-N scheme is addressed

to Hempel’s thesis that there exists a logical symmetry between explana-

tion and prediction [Hempel et al., 1948, p. 139]11. The classical example of

“paresis and syphilis”, proposed by Michael Scriven in his [Scriven, 1962], is

intended to show that this is not always the case. What is more, the D-N

model is not able to accommodate singular-causal explanations and it does

not even state necessary conditions for acceptable explanation12. Consider

the (true) statement: ‘paresis is caused by untreated syphilis’. This state-

ment does not contrast with the statement that ‘syphilis is not often followed

by paresis’ (the chance that an individual syphilitic develops paresis is low,

because only a small percentage – roughly 25% – of those who have untreated

latent syphilis become paretic). Now, consider that Mario Rossi, a patient

with untreated syphilis, has developed paresis. According to Scriven, we can

explain Mario’s paresis by saying that ‘Mario’s paresis was caused by his

untreated latent syphilis’. The problem with the Hempelian model is that

this explanation has not a D-N structure: the condition cited as explaining

the paresis fails to be nomologically sufficient for paresis and it also fails to

make paresis high probable. The latter consideration –the fact that the prob-

abilistic cause of the phenomenon only gives it a low probability of occurring

– also excludes the use of the Inductive-Statistical (I-S) model, which was

proposed by Hempel in his [Hempel, 1965] as to cover the case of statistical

10The unification account, which will be discussed in the next chapter, might be regarded
as an attempt to develop such an idea and add some feature X to logical conditions.

11Hempel advocates the“thesis of structural identity” [Ladyman, 2002, p. 205] according
to which explanations and predictions have exactly the same structure. The only difference
between them is that in the case of an explanation we already know that the conclusion
of the argument is true, whereas in the case of a prediction the conclusion is unknown.

12 For a discussion of Hempel’s defense see [Dietl, 1966].
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Pr (B|A) = r        Statistical law

AC                    Statement of particular fact

BC                Individual event            
 

}
}

Explanans

Explananandum

[r]

Figure 2.2: Schema summarizing the I-S model. The double line indicates
that the premises confer the conclusion the probability r, which is supposed
to be close to one. The argument explains c’s being B by showing that this
is to be expected, with probability r, in view of the general statistical law
and the statement of particular fact included in the explanans.

laws to explain things, and more precisely to include individual events under

statistical laws (Figure 2.2). In this model, the relation between explanans

and explanandum is inductive rather than deductive, in the sense that it

lends more or less strong inductive support to the explanandum sentence.

The I-S model could be seen as a natural generalization of the idea which

stands behind the D-N model: while the D-N explanation shows that an

explanandum was to be expected with certainty, the I-S explanation shows

that it was to expected with high probability (to the extent that its explanans

confers high probability on the explanandum outcome). Hence, the paresis

example represents a case where an explanandum is explained but neither

the D-N nor the I-S model are able to exhibit its nomic expectability. In

other words, nomic expectability is not a necessary condition for explana-

tion. In Scriven’s words: “An event which cannot be predicted from a set of

well-confirmed propositions can, if it occurs, be explained by appeal to them”

[Scriven, 1959, p. 480].

After this short review of the D-N model, let me consider it in the context

of Baker’s paper. Baker refers to his 5 step procedure as a layout similar to

the layout for the inference poposed by the D-N model. However, premise

(2) of Baker’s scheme (“prime periods minimize intersection”) refers to a

mathematical theorem, which does not have empirical content and does not
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represent a law of nature, thus violating conditions R2 and R3. Baker is

conscious of this problem with the D-N requirements:

But does the deductive-nomological model have the resources to din-

stinguish explanatory from non-explanatory components of the ex-

planations? One point in the platonist’s favour is that the purely

mathematical premise (2) of the cicada inference is in the form of a

general law, in this case a theorem of number theory. A broadening of

the category of laws of nature to include mathematical theorems and

principles, which share commonly cited features such as universality

and necessity, would count the mathematical theorem (2) as explana-

tory on the same grounds as the biological law (1) [Baker, 2005, p.

235].

Although Baker does not endorse any particular account of explanation

(as himself has confirmed me in a private conversation), the previous quota-

tion seems to suggest that, in order to distinguish an explanation of physical

phenomena in which the mathematics plays an explanatory role from an ex-

planation of physical phenomena in which it does not, the D-N model would

need an extension (I will call this model ‘D-N Extended’). And this exten-

sion should be based on the “broadening of the category of laws of nature

to include mathematical theorems and principles”. If we follow Baker’s sug-

gestion, condition R3 of the original D-N model would assume, in the D-N

Extended, the following form:

R3* The explanans must have empirical content (i.,e. it must capable, at least

in principle, of test by experiment and observation) or it must be a mathe-

matical theorem (i.e. an analytical truth).

In passing, let me observe that it seems quite surprising that here Baker

suggests to rehabilitate, for the case of MEPP, a model of scientific expla-

nation which was addressed to explanations and predictions taking the form

of logical derivations from observational statements. My aim here is just to
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jump on Baker’s suggestion and show how the D-N Extended lacks the re-

sources to correctly account for MEPP in its deductive structure.

A first observation concerning the D-N Extended has to do with the role

of causal claims in scientific explanation. Advocates of the original D-N

model referred to types of explanation where it is possible to trace a causal

history from the sentences C1, C2, ..., Ck to the singular event by empirical

regularities L1, L2, ..., Lr
13.

If E describes a particular event, then the antecedent circumstances

described in the sentences C1, C2, ..., Ck may be said jointly to “cause”

that event, in the sense that there are certain empirical regularities,

expressed by the laws L1, L2, ..., Lr, which imply that whenever condi-

tions of the kind indicated by C1, C2, ..., Ck occur, an event of the kind

described in E will take place. Statements such as L1, L2, ..., Lr, which

assert general and unexceptional connections between specified char-

acteristics of events, are customarily called causal, or deterministic,

laws. [Hempel et al., 1948, p. 139]

Naturally, to adopt condition R3∗ is to abandon the idea that an explana-

tion must provide such a causal linkage. Now, while in the Hempelian account

explanations are arguments, by adopting R3∗ we are left with a schema which

is nothing more than a purely logical deduction. Consequently, explaining

an outcome E (in our case a phenomenon mathematically formulated) is just

a matter of showing that it is nomically expectable, and then every phe-

nomenon mathematically formulated is recognized by the D-N Extended as

a case of MEPP. Although this would be at odds with the evidence coming

from the scientific practice (where, as Baker’s case shows, scientists do not

consider that every application of mathematics yields explanatory power), it

13This made the D-N model vulnerable to the problem of adopting an account of cause
or causal relation, without simply leaving those notions as primitive. For a discussion of
this point and a survey of the major criticisms to the D-N model see [Woodward, 2003].
Although interesting, these criticisms will not affect my discussion in the following lines,
so I will not comment on those.
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might be thought that this observation cannot be used to block the use of

the D-N Extended. In fact, once we adopt the Hempelian perspective that

explanation is logical deduction, we do not need to resort to such ‘evidences’

from scientific practice. However, let me observe that the import of such

‘evidences’ is considered by some philosophers as of extreme importance for

the philosophical investigation of MEPP [Mancosu, 2008a]. Therefore the

intuitions coming from the scientific practice must be seriously taken into

consideration. This is why, in the next lines, I am going to propose a case

where the D-N Extended cannot mirror the intuitions coming from the sci-

entific practice, and I will argue that this fact discloses a limitation of this

model in the context of MEPP.

There are MEPP which are recognized as such in scientific practice and

in which the mathematical component does not come in the form of a theo-

rem, i.e. a statement (as required by R3∗). For instance, in their paper “The

Explanatory Power of Phase Spaces” [Lyon et al., 2008], Lyon and Colyvan

have considered a particular test case and have focused on the explanatory

role of phase-space theories [Lyon et al., 2008]. In that case, the fact that

the so called Hénon-Heiles systems, i.e. systems formed by a particle moving

in a bidimensional potential U(qx, qy) = 1
2
(q2
x + q2

y) + qxq
2
y − 1

2
q3
y, exhibits

regular or chaotic motion is deduced visually from a representation in the

phase-space14. Thus the phase space, with its mathematical apparatus, is

regarded to have an explanatory role:

The explanatory power is in the structure of the phase space and the

Poincaré map. So it seems that this is a case where using the phase

space is essential to our understanding and ability to explain certain

features of the world. [Lyon et al., 2008, p. 14]

14I will come back to this example in the last part of this dissertation. Nevertheless,
let me add here some details essential to understand how the regular or chaotic motion
is deduced visually. We consider the total energy of the system E constant (and thus
we lower the dimensionality of the space by one). Next we take a 2-dimensional cross
section of this hypersurface in the phase space and then we map the intersections of the
trajectories with the plane by using a function called Poincaré Map. Finally, we look at
the “dots” made by the solutions (orbits) on the Poincaré section and we can visually grasp
qualitative informations about the dynamics of the system at that particular energy.
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Now, it is important to note that the mathematical procedure involving

phase space is not the only alternative for the study of the system. In fact,

it is possible to analyze the system via the Lagrangian formalism, although

this route seems not to convey the sense of explanatoriness that we obtain

from the use of the phase space theory in the Hamiltonian formalism:

[...] although there is a Lagrangian formulation of the theory in ques-

tion that does not employ phase spaces, the cost of adopting such an

approach is a loss of explanatory power. [Lyon et al., 2008, p. 2]

From this example two important points emerge: first, even if mathemat-

ics comes as an essential ingredient, it is not a particular theorem (i.e. a

mathematical law) which participates in the explanation; second, although

two mathematical procedures are acceptable as to study the physical phe-

nomenon (regular or chaotic motion of the particle moving in the potential),

only one of them contributes to the MEPP. Consequently, in the context of

this example, the D-N Extended is confronted with the following problem:

the model cannot deal with mathematical operations or procedures which do

not come under the form of statements, and therefore it does not recognize

the explanation as genuine. What is more, even if we would have such math-

ematical procedures under the form of theorems, the model would lack in

resources to discriminate between the explanatory mathematical procedure

and the non-explanatory one. In fact, these procedures are both formally

correct, and therefore the D-N Extended would consider both equally ex-

planatory (both are good ingredients of the logical deduction).

The moral of the previous lines is that this model does not accurately

describe important aspects of scientific practice, and for this reason should

be amended or abandoned for MEPP15. Of course, this claim is based on the

assumption that the intuitions coming from the scientific practice provide

15I believe the situation is worse in cases of mathematical explanation within mathemat-
ics, where every legitimate deduction will assume the status of explanation when analyzed
through a model which uses a deductive scheme similar to that of the D-N model. Every
formal proof inevitably follows a logical deductive schema.
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some guidelines in the study of MEPP, and that these intuitions should be

mirrored by our philosophical accounts of explanation. Nevertheless, this is

something that I regard as natural (and widely accepted) in the context of

MEPP. I would be happy about the following situation: the D-N Extended

model (or any other model) does identify a MEPP as genuine and that par-

ticular MEPP is recognized as genuine in the scientific practice as well. This

situation would be, I think, an indicator of the fruitfulness of the philosophi-

cal investigation which lies behind that account of explanation. On the other

hand, I regard neither reasonable nor philosophically fructuous that a philo-

sophical model of explanation does impose a criterion of explanation on the

scientists in a context where the scientists does not agree in considering a

particular application of mathematics as explanatory. And this is precisely

what happens if we endorse the D-N Extended account in the context of the

Hénon-Heiles example. In fact, the model considers the Lagrangian path to

the study of the system as explanatory, thus forcing the scientists to regard

it as a genuine MEPP (something which scientists do not do in that context,

because they consider as explanatory the Hamiltonian route).

Baker himself is conscious of the difficulties with the D-N model and

seems to prefere a different approach: the pragmatic account developed by

Bas C. Van Fraassen in his book The Scientific Image [Van Fraassen, 1980].

2.3 Van Fraassen pragmatic theory and MEPP

According to Baker, the pragmatic theory of explanation is the most apt

in order to account for the explanatoriness of the mathematical component

in the explanation of the cicada life-cycle.

According to the pragmatic account, explaining a phenomenon in-

volves providing an answer to a “why” question which shows how the

phenomenon is more likely than its alternatives. This is the sketchiest

of the three accounts, but perhaps also the most useful in the present

context. It suggests that genuinely explanatory applications of math-
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ematics ought to be reconfigurable as answers to questions about why

a certain physical phenomenon occurred. [Baker, 2005, p. 235. My

italics]

Therefore, we are confronted again with the idea of extending a model of

scientific explanation as to include a mathematical subject and cover MEPP.

Before starting my discussion of the model, let me observe that there is

an aspect of Van Fraassen’s theory of explanation which is regarded by Baker

in a way which is fundamentally different from Van Fraassen’s original con-

siderations. This aspect does not concern the technical details of the theory,

which are not discussed by Baker, but the commitment to the ontological

character of the theory itself16. While in Van Fraassen the pragmatic ac-

count is not committed to any form of realism17, and the Inference to the

Best Explanation (IBE) is rejected as a plausible criterion to establish the

existence of entities postulated by a scientific theory [Van Fraassen, 1980, p.

19]18, in a footnote of his paper Baker points out that “there seems to be no

reason why the pragmatic account cannot instead be combined with versions

of realism” [Baker, 2005, p. 235]19. As we will see further in this dissertation,

16In passing, let me not that in the previous quotation Baker gives the following char-
acterization of the pragmatic account: “according to the pragmatic account, explaining
a phenomenon involves providing an answer to a why question which shows how the
phenomenon is more likely than its alternatives” (my emphasis). This characterization,
however, seems to be more appropriate for a model of explanation such as the induc-
tive statistical model (I-S), which considers explanation as involving the subsumption of
individual events under statistical laws.

17As the term “pragmatic” suggests, in Van Fraassen the acceptance of a theory has only
a pragmatic dimension. The anti-realist flavour of Van Fraassen’s philosophy comes in
various passages of his book The Scientific Image. His theory of explanation is developed
as an alternative against “requests for explanation to which realists typically attach an
objective validity which anti-realist cannot grant” [Van Fraassen, 1980, p. 13]. This point,
as I will show further in this chapter, will be crucial to one of the major criticisms of Van
Fraassen’s theory of explanation, namely that advanced by Philip Kitcher and Wesley
Salmon.

18For a criticism of IBE different from Van Fraassen’s see, among others,
[Friedman, 1983] and [Cartwright, 1983].

19Baker is not the only one who disentangles Van Fraassen’s account from an anti-realist
commitment. See, for example, a similar claim by Alan Richardson in the endnote 22 of
his paper in defense of Van Fraassen [Richardson, 1995, p. 128], or Geoffrey Hellman in
[Hellman, 1983, p. 232].
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Baker admits IBE as a valid instrument for the realist and broadens the use

of this principle in the context of the platonist-nominalist debate in philoso-

phy of mathematics.

The previous observation is connected to a more general remark put for-

ward by Baker, which I use as starter for this section. He suggests to consider

the case of explanations in science, which involve concret theoretical posits,

on par with mathematical explanations in science20. This is why Baker con-

siders that the answer-question couple

• Why question: Why is the light from certain galaxies getting bent?

• Answer to the why question: Because there is a black hole between us

and the distant galaxies.

could be paralleled to the couple of why-question and direct (partial, as Baker

suggests) answer21:

• Why question: Why do periodical cicadas have prime periods?

• Answer to the why question: Because prime numbers minimize their

frequency of intersection with other period lengths.

Let’s keep in mind the example of cicadas and the fact that behind the

answer which appears in the second couple why-question/answer there is a

mathematical theorem.

I will refer to the pragmatic account for mathematical explanation in

science (implicitly suggested in Baker but not developed by Van Fraassen or

others) as the “Pragmatic-Extended Theory” (PET). While there have been

20Of course, it seems that this claim is in itself free from ontological import. However,
differently from what we have seen with Steiner in the previous chapter, behind Baker’s
claim there is the convinction that concrete posits figuring in an explanation are real and
so are the mathematical posits which appear in the same explanation. In fact, he applies
IBE in the context of realism in mathematics.

21The terms “why question” and “direct answer” which appear here are borrowed from
the language of Van Fraassen’s theory. We will see them below in more detail, but for the
present purpose it is sufficient to say that, in Van Fraassen’s model, an explanation is an
answer (better, a direct-answer) to a ‘why-question’.
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some efforts to assess and extend Van Fraassen’s account in the context of

mathematical explanation within mathematics [Sandborg, 1998], in Baker we

have the first (implicit) attempt to discuss the pragmatic model for a case of

mathematical explanation in science.

Let’s now see what the original pragmatic account consists of. After that,

I will come back to Baker in order to understand how the PET can be applied

to his particular test case of cicadas. Therefore I will report some criticisms

which have been leveled against the pragmatic model and, finally, I will make

some general comments concerning the applicability of the pragmatic account

in the context of MEPP.

2.3.1 Van Fraassen on explanation

Van Fraassen presented his pragmatic theory of scientific explanation

in his book The Scientific Image [Van Fraassen, 1980]22. Although shar-

ing some similarities with other approaches to explanation, such as Pe-

ter Achinstein’s illocutionary theory23, Van Fraassen’s account differentiates

from those because it relies on the specific claim that explanations can be

properly evaluated with respect to ‘why-questions’.

Perhaps the best way to introduce his view on explanation is to quote

two passages from Van Fraassen himself:

There are no explanations in science. How did philosophers come

22Actually, the chapter of The Scientific Image in which his theory of explanation
appears is based on Van Fraassen’s previous paper “The Pragmatics of Explanation”
[Van Fraassen, 1977].

23In his book The Nature of Explanation [Achinstein, 1983], Achinstein focused on the
act of explanation, and not only on the product of such an act. Explanation may refer
either to a process (a linguistic performance thorugh which someone explains something
to someone) or a product (the content of the linguistic performance). For the same words
can be used either to explain or to do not explain, the role of the intention (or illocutionary
force) in characterizing the product must be central to an analysis of the product itself.
The same sentence ‘She drank too much last night’ could be used by a physician in order
to explain Mary’s malaise this morning, and by Mary’s husband to criticize his behaviour.
Mary’s husband speech act is not an explanation and, consequently, what he produced
is not an explanation. For a short presentation of Achinstein’s illocutionary theory of
explanation see [Salmon, 1989, p. 146-150] or [Pitt, 1988, p. 199-222].
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to mislocate explanation among semantic rather than pragmatic rela-

tions? [Van Fraassen, 1977, p. 150]

An explanation is not the same as a proposition, or an argument, or

list of proposition. (Analogously, a son is not the same as a man,

even if all sons are men, and every men is a son.) An explanation is

an answer to a why question. So, a theory of explanation must be a

theory of why-questions. [Van Fraassen, 1980, p. 134]

Thus, according to Van Fraassen, there is no scientific explanation sim-

pliciter, but explanations are relative to the context dependent why-questions

they answer24. What is requested in order to respond to the question ‘Why

is it the case that P?’ differs from context to context, and the question arises

in a context with a certain body of accepted theory plus information. As

answers to context-dependent questions, explanations (better: explanatory

evaluations) are themselves context-dependent. The same thesis about the

context-dependence of explanatory evaluation has been expressed by other

authors as well. Resnik and Kusher, assessing the difficulty of Steiner’s model

in their paper “Explanation, Independence and Realism in Mathematics”

[Resnik et al., 1987], point out that

Without committing ourselves to the details of Van Fraassen’s anal-

ysis nor its prima facie ontic commitment to propositions we shall

adopt its moral that nothing is an explanation simpliciter but only

relative to the context dependent why-question(s) that it answers.

[Resnik et al., 1987, p. 153]

The context dependency of scientific explanation comes, according to Van

Fraassen, from the fact that scientic explanations are not pure science but an

24Nevertheless, I am considering Van Fraassen’s account among the WTA conception
of explanation, i.e. the conception of explanation in which the model is designed in order
to capture explanation through a single model (and then, we might say, a general notion
of explanation). How do I justify the choice to consider Van Fraassen among the WTA
models? I will provide a motivation for this choice further in this section, when I will
present David Sandborg’s criticism of Van Fraassen’s model.
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application of science, i.e. the use of science to satisfy certain of our desires in

a specific context [Van Fraassen, 1980, p. 156]; our desires are always desires

for descriptive information and are specific depending on the context, then

our evaluation of the information provided differs from context to context.

This idea is evident from the way in which Van Fraassen formulated his the-

ory of why-questions, which I am going to summarize here.

Van Fraassen’s approach to the general logic of questions was inspired by

Belnap and Steel’s book The Logic of Questions and Answers [Belnap et al., 1976],

with some refinements in order to fit the theory of telling answer with other

studies on scientific explanation. For Van Fraassen, a necessary prerequisite

for an explanation is that there is a why-question. But what exactly a why

question is? In the pragmatic model a why-question is a triple Q = 〈Pk, X,R〉
consisting of:

• a topic Pk

• a constrast class X = {P1, ..., Pk, ...}

• a relevance relation R

When we ask “Why Pk?” we refer to a proposition Pk called the topic of

our question (Pk expresses the fact to be explained, i.e. the explanandum).

The contrast-class of the question is a set of alternatives, that is, a class X of

propositions {P1, ..., Pk, ...} which includes the topic Pk. The propositions (or

alternatives) Pi belonging to X are propositions expressing possibilities the

questioner is willing to consider, including Pk. Finally, a relevance relation

R is the “respect-in-which a reason is requested”. The relevance relation is

used to constrain admissible answers, by specifying what factors will count

as explanatorily relevant and thus by distinguishing between different senses

of the question. A proposition A is called relevant to a why question Q if

A bears relation R to the couple 〈Pk, X〉25. Answers to such a question Q

25The only formal constraint on the relevance relation is that it obtains between proposed
answers and topic/contrast-class pairs. Van Fraassen does not offer any other relevance
requirement on R in the formal characterization. I will return to this point, central to
Kitcher and Salmon criticism of Van Fraassen model [Kitcher et al., 1987, p. 318], below.
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differ from non-answers because they have the following form of words: “Pk in

constrast to (the rest of) X because A”, where the word “because” indicates

that A is a reason. More precisely, the word ‘because’ guarantees that A

is relevant, in this context, to the question, i.e. that it bears relation R

to 〈Pk, X〉. Van Fraassen observes that to consider the claim of relevance as

implicitly contained in such an answer (behind the linguistic signal“because”)

is just a matter of regimentation, in order to avoid the building of the claim

of relevance into the question as an explicit conjunct. Thus a definition of

the notion of direct answer, i.e. what counts as an answer to a why-question,

is the following:

B is a direct answer to question Q = 〈Pk, X,R〉 exactly if there

is some proposition A such that A bears relation R to 〈Pk, X〉
and B is the proposition which is true exactly if (Pk; and for

all i 6= k, not Pi; and A) is true, where X = {P1, ..., Pk, ...}.
[Van Fraassen, 1980, p. 144].

For simplicity, call A the core of answer B (so that the answer can be

abbreviated to “Because A”) and the proposition (Pk; and for all i 6= k, not

Pi; and A) the central presupposition of question Q. The above definition

of direct answer determines the presupposition, namely what a why-question

exactly presupposes:

(a) that its topic is true (Pk is true).

(b) that in its contrast class, only the topic is true (each Pi in X is false if

i 6= k).

(c) that at least one of the proposition that bears its relevance relation to

its topic and constrast-class, is also true (there is at least one A true

which bears R to 〈Pk, X〉).

Van Fraassen claims that the presupposition of a why-question, plus some

additional requirements, allows us to solve one of the major puzzle theories
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of scientific explanation are confronted to, that is, the kind of problem intro-

duced by Scriven paresis’ example in section 2.2. Following Van Fraassen’s

terminology, let me call this problem the problem of the rejection of explana-

tion requests.

As we have seen when we introduced Hempel’s D-N model, one question

which we were not able to answer, and which caused tension with that pic-

ture of explanation, was: “why did Mario Rossi contract paresis rather than

some of his luckier fellow syphilitics”?26. Van Fraassen points to Scriven

paresis’ example as to show that there are cases, in a theory’s domain, where

the request for explanation is nevertheless rejected because at that stage,

i.e. during that particular period, that particular request is considered as

intrinsically illegittimate. And this is the case of the paresis example, where

the medical science still does not have an answer for why Mario Rossi was

the only syphilitic who developed paresis27. For instance, the Aristotelians

asked the Galileans the (illegitimate) question: “Why does a body free of

impressed forces retain its velocity?”. Newton’s theory of gravitation did not

offer an explanation of gravitational phenomena, but only a description. It

is thus clear that the problem is to have a criterion of what to consider as

a legitimate explanation request in a particular period, because, to put the

problem in Van Fraassen’s language, “not everything in a theory’s domain is

a legitimate topic for a why-question, and that what is, is not determinable

a priori” [Van Fraassen, 1980, p. 112].

A first solution (but not complete, as we will see in a moment) to the

problem of the rejection of explanation request is given, according to Van

Fraassen, by the constraints (a), (b), (c) expressed by his presupposition. For

instance, if the why question has a false presupposition (ex: the topic Pk is

false), then the best response in not a direct answer, for no direct answer

could be true, but a corrective answer (a denial of one or more parts of the

presupposition, such as ‘Pk is not true!’). Nevertheless, something more, as

26The expression “rather than some of his luckier fellow syphilitics” comes from Philip
Kitcher [Kitcher, 1985b, p. 635].

27Of course, the same medical science hopes to find such an answer someday soon.
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the example of the paresis shows, must be required if we want an answer

telling for the topic28. In the paresis example, where the why-question has

topic ‘Mario Rossi contracted paresis, rather than some of his luckier fel-

low syphilitics’, the presupposition is true because: the topic Pk is true; the

answer satisfies the relevance relation, i.e. the answer ‘because Mario had

untreated syphilis’ gives the sort of information the questioner has in mind; in

the contrast class only the topic Pk is true. However, no telling answer could

be given (there is nothing that favours Mario’s developing paresis among the

contrast class). As Van Fraassen himself remarks: “However, as we shall see,

if all three of these presuppositions are true, the question may still not have a

telling answer” [Van Fraassen, 1980, p. 145]. David Sandborg puts the point

in this way:

Van Fraassen needs an evaluative component for answers beyound the

relevance relation, because even if an answer gives the sort of informa-

tion the questioner has in mind (i.e. satisfies the relevance relation),

and all of that information is true, it may still not have any bearing

on the topic with respects to the contrast class. [Sandborg, 1998, p.

606]

The strategy in order to decide if an answer is a good answer or an answer

better than other answers that might have been given is called ‘the process

of evaluation’. The evaluation of answers to why-questions is made with

reference to background information and to the part of science accepted as

background theory in the particular context in which the question is posed.

We call ‘K’ this body of accepted background theory and factual informa-

tion, assumed as the same for the questioner and the audience29.

28While Van Fraassen does not offer a definition of “telling answer” during his discus-
sion of his theory of why-questions, for him “telling” means ‘revelant for the topic with
respect to its alternatives’. This idea is explicitly stated in his article “The Pragmatics of
Explanation” [Van Fraassen, 1977, p. 150]. The paresis’ example is intended to illustrate
this point and introduce Van Fraassen’s theory of telling answers.

29Kitcher and Salmon have observed that the body of knowledge of the person Sq who
poses the question could not be the same body of knowledge of the respondent Sr, and
then two different contexts are involved [Kitcher et al., 1987, p. 318].
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Van Fraassen stresses the role of K in the emergence of questions in a

precise context. He suggests the expression “the question Q arises in the

context” to mean that K implies the central presupposition (Pk; and for all

i 6= k, not Pi; and A) and K does not imply the denial of any presuppo-

sition (a),(b),(c), that is, it is altogether appropriate to raise Q even if we

do not know whether there is a direct answer or not, provided the central

presupposition is fulfilled.

Assume we are in a context with background K of accepted theory plus in-

formation. A questionQ with topic Pk and contrast classX = {P1, ..., Pk, ..., Pn}
arises. How could the answer Because A be evaluated as telling, good or bet-

ter? Van Fraassen suggests that the evaluation of “how much an answer is

telling” relies on three different criteria:

1. The fact that A itself is more probable (than other reasons) in light of

our knowledge K.

2. The probability that A, and thus the answer, favors the topic Pk against

the other members of the contrast class relative to background knowl-

edge (favoring criterion).

3. The fact that the answer is made wholly or partially irrelevant by other

answers that could be given.

While the first criterion is straightforward (if the question arises in a con-

text, we ask what probability K bestows on A and later we compare this with

the probability which K bestows on the cores of other possible answers), the

favoring criterion is less intuitive. To score well, the answer should increase

the distance between the probability of the topic and the probabilities of the

other members of the contrast class. The idea here is that, in order to avoid

trivializations, the evaluation of the answer ‘Because A’ to question Q should

be made with reference only to a part K(Q) of our knowledge K30; K(Q)

30If it would not be so (and we would consider all knowledge K), the favoring criterion
would express exactly the information that the topic is true and the alternatives in X are
not (the topic would be already part of our background knowledge), thus making possible
trivialization.

91



constitutes the general theory about these phenomena together with other

auxiliary facts which are known but which do not imply the fact to be ex-

plained. The way in which the subset K(Q) of K is selected is not specified,

and this problem is common to other theories of scientific explanation, as

acknowledged by Van Fraassen himself [Van Fraassen, 1980, p. 147]31. The

last criterion concerns the availability of superior answers. It indicates that

the answer A loses marks if it has a rival that fares better, perhaps because

the rival receives higher probability in light of K, perhaps because the rival

favors the topic more than A does32, perhaps because the rival screens off A

from the topic.

Now, with Van Fraassen’s theory of telling answers in our hands, let us

focus again on the why-question “Why is the case that Mario Rossi con-

tracted paresis in contrast to other syphilitics?”. For this why-question, as

Van Fraassen puts it, there is no answer (and then no explanation) because

in the present context we have no information that favours Pk in contrast

to other members of X. At the present time, we do not have something (a

medical theory, for instance) which makes possible to favour the topic ‘Mario

Rossi contracted paresis’ in contrast to other members of the contrast class

which, exactly as Mario himself, have an history of untreated syphilis and

could have contracted paresis. Thus the answer ‘because Mario had syphilis’

is not explanatory in this context. On the other hand, if we consider the dif-

ferent why-question ‘Why did Mario get paresis, rather than his colleagues?’,

the answer ‘Because he had syphilis’ will represent an explanation because

the property of Mario that his colleagues did not have makes his probability

of getting paresis higher than theirs (thus excluding other possible answers).

31As observed by Wesley Salmon, the subset K(Q) of background knowledge we have
to choose in order to evaluate a direct answer reminds Hempel’s problem of maximal
specificity, i.e. a traditional problem in scientific explanation [Salmon, 1989, p. 145]. On
the problem of maximal specificity see [Massey, 1968].

32Salmon has pointed out that: “In Van Fraassen’s erotetic version of the epistemic con-
ception the ‘rather than’ condition is preserved through the requirement that an adequate
explanation favor the topic of the why-question. This requirement is not tantamount to the
high-probability requirement of the inferential version [Hempel’s model]” [Salmon, 1984b,
p. 301].
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To put it simply, Van Fraassen’s claim in the context of the paresis’ ex-

ample amounts to the following: by taking into account the contrast-class,

a step which is made explicit in the criteria of evaluation 1-3, we have an

evaluation of the telling character of our answer and therefore we solve the

traditional problem of rejection of requests for explanation. Finally, the con-

text has done the work for us.

The previous lines, together with the paresis’ example, were aimed at

giving the basic structure of Van Fraassen’s theory of why-questions. Nev-

ertheless, now we want to see how this theory might work in the context of

MEPP.

Van Fraassen’s theory addressed general scientific explanation and did

not take into account mathematical why-questions. However, according to

Van Fraassen, scientific explanations do not distinguish themselves from or-

dinary explanations by the form or by the sort of information adduced, but

only by the fact that such type of explanations “draw on science to get this

information” and that “the criteria of evaluation of how good an explanation

it is, are being applied using a scientific theory”. Therefore, as observed by

David Sandborg:

An adequate why-question oriented theory of explanations should ad-

dress mathematical, as well as empirical, why-questions. [...] Math-

ematical explanations should differ from other types only in their

subject-matter; not in any fundamental way. Since why-questions

can be and are asked and answered about mathematical facts (for in-

stance, after having been informed that 1− 1
3 + 1

5 −
1
7 + ... converges to

π
4 , it is certainly reasonable to ask why this is so) as well as empirical

ones, the why-question approach should be adaptable to mathematical

explanations. [Sandborg, 1998, p. 604]

Let’s then address again the cicada case.
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2.3.2 Pragmatic account and cicadas

As we have seen, Baker claims that in the case of cicada we have the

following couple why-question-(direct) answer:

(*) Why question Q: Why do periodical cicadas have prime periods?

(**) (partial) Answer: Because prime numbers minimize their intersection

with other period lengths.

Here the topic Pk is ‘periodical cicadas have prime periods’, while the

proposition A is ‘prime numbers minimize their intersection with other pe-

riod lengths’. Moreover, let me observe that Baker considers (**) as a “par-

tial” answer. The reason for this is that, as we have seen in section 2.1, the

number theoretical result ‘prime numbers minimize their intersection with

other period lengths’ represents only an ingredient of the cicada-explanation.

The additional ingredients of the explanation come from biology and concern

some ecological constraints and evolutionary laws. However, I am going to

show that these ingredients can be included in the why-question (*), thus

leaving the answer (**) unchanged and complete.

First of all, it is important to remark that there could be different ‘read-

ings’ of the topic Pk, and every reading has a different contrast class X. For

example, if in the topic we stress the expression ‘periodical cicadas’, our read-

ing of the why-question (*) will be: Why do periodical cicadas have prime

periods? That is, why periodical cicadas (and not humans, cats or Chi-

nese pandas)? Depending on the interest of the questioner, the same form

of words in Q can pose different contrastive why-questions, each one with a

different “constrastive focus”33. To fix a particular reading amounts to indi-

cating what sort of explanatory information is wanted, and therefore it yields

the exclusion of events which do not belong to the relevant range of events

33Contrastive why-questions have been studied for the first time by [Dretske, 1972].
He calls constrastive statemens that statements which embody a particular focus, called
“contrastive focus”. To have a constrastive focuse implies a “featured exclusion of certain
possibilities” [Dretske, 1972, p. 412].
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(observe that sometimes Q contains an explicit “rather then...” which facil-

itates the individuation of the focus). In Baker’s example the constrastive

focus is located on ‘prime periods’, and not on ‘periodical cicadas’, and thus

the explanation requests concern the primeness of the life-cycle of periodical

cicadas. To put it differently, in the biological context the why-question (*)

has the following reading: ‘Why do periodical cicadas have prime periods?’.

More precisely, we do not consider all prime periods but we want an ex-

planation of why periods are particular primes (13 and 17). Therefore the

why-question must include some further information about the considered

periods, and (*) should be reformulated in a more correct form as follows:

(***) Why cicadas in ecosystem type E have a period of n years, where n

is the only prime between p and q, with p and q limits stated by the

biological constraints and the evolutionary laws?

Observe that I have included the biological constraints and the evolution-

ary laws in the why-question (***). Consequently, such constraints do not

appear in the answer (**), which is left unchanged and must be regarded as

a complete answer.

Now, we want to see if Van Fraassen’s theory regards the answer (**) as

a correct explanation. What kind of propositions do we find in the contrast

class X? Consider, as I did in the illustration of the cicada-case, 17-years

periodical cicadas (but the same reasoning holds for 13-years cicadas). There-

fore (***) will take the form: ‘Why cicadas in ecosystem type E have a period

of 17 years, where 17 is the only prime between 14 and 18, with 14 and 18

limits stated by the biological constraints and the evolutionary laws?’. The

topic Pk is ‘cicadas in ecosystem type E have a period of 17 years, where

17 is the only prime between 14 and 18, with 14 and 18 limits stated by

the biological constraints and the evolutionary laws’. By assuming that the

period of life-cycle (in years) of cicadas is an integer, in X we find all the

alternatives including the topic: {‘periodical cicadas have 14-years period’,

‘periodical cicadas have 15-years period’, ‘periodical cicadas have 16-years
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period’, ‘periodical cicadas have 17-years period’, ‘periodical cicadas have

18-years period’}. Now, let’s see if the central presupposition is fulfilled:

1. Pk is true

2. In X only Pk is true

3. A bears relation R to 〈Pk, X〉.

At a first look it seems that point 1 and 2 are not problematic. We

have a quantity of biological observations that support the evidence of the

topic Pk. Moreover, the alternatives in the contrast class are excluded by

such observations. However, from a deeper examination we notice that there

are two problems with presuppositions 1 and 2. First, the topic include in

itself the expression “prime number”, which is a mathematical expression.

This turns the topic in a very different topic from a topic such as “bodies

fall to the Earth”. A similar observation is made by Sorin Bangu in the

context of the debate about the indispensability arguments, a debate which

took place around Baker’s paper [Bangu, 2008]34. Second, the word ‘period’

refers to a precise time evaluation, which presupposes some chosen unit for

time evaluation. But such a unit could be conventional (How do we value the

duration of a year? When does a year finish?). Are these real difficulties? The

latter problem could be dismissed by considering that years are intrinsically,

and not arbitrarily, rooted in the physical characteristics of the example35.

34Bangu points out that, in Baker’s example, the mathematical language is essential to
the formulation of the question to be answered (“Why cicadas in ecosystem type E have a
period of n years, where n is the only prime between p and q, with p and q limits stated by
the biological constraints?”). Thus the truth of the explanandum presupposes or depends
on the truth of a mathematical statement (primeness is a mathematical property which
applies to numbers). By taking the explanandum, which is a mixed statement (i.e. it
contains mathematical plus non-mathematical facts), as being true to comply with the
requirements of the IBE strategy (IBE strategy assumes that both the explanans and the
explanandum are true statements), Baker assumes mathematical realism before he argues
for it. This undermines Baker’s argument for realism and begs the question against the
nominalist. In passing, let me note that Bangu’s argument is very similar to Steiner’s
negative argument about the use of MEPP as to infer the existence of mathematical
entities (we have seen Steiner’s argument in the previous chapter).

35This is the line of defense adopted by Baker [Baker, 2009]. He observes that the
choice of year as time unit is not arbitrary because it depends upon the revolution of the

96



The former problem, which concerns more the indispensability argument’s

context, can be rejected simply adopting Van Fraassen’s point of view: the

topic Pk is just a true proposition.

However, the third presupposition is problematic in our case of MEPP,

and I am going to show why. Before doing that, and discussing the process

of evaluation for PET, let me consider some criticisms of Van Fraassen’s

theory of explanation advanced by Philip Kitcher, Wesley Salmon and David

Sandborg. I will parallel these criticisms with a defense of Van Fraassen

endorsed by Alan Richardson. These comments will be very useful to evaluate

a possible extension of the pragmatic account in the context of MEPP.

2.3.3 Criticisms

The criticism advanced by Kitcher and Salmon in their paper“Van Fraassen

on Explanation” [Kitcher et al., 1987] can be summed up in three mutually

dependent points: the impossibility for Van Fraassen’s theory of explanation

of solving the traditional problem of asymmetry; the fact that his account is

subject to trivialization; the fact that, in order to “save” his account by in-

troducing a formal constraint on the relevance relation, Van Fraassen would

Earth around the Sun. There is a direct relationship between the internal rhythms of an
organism and the external rhythms of the environment. However, observe that chronobi-
ology, i.e. the systematic scientific study of living timing processes in plants and animals,
distinguishes between endogenous (driven internally) and exogenous (driven externally)
rhythms (a rhythm is a change that is repeated with a similar pattern, for instance the
emergence of the periodical ciacada) [Koukkari et al., 2006, p. 90]. The length of time
required to repeat a rhythmic cycle is called the period, a characteristic that has been
used to categorize rhythms into three major groups: circadian (20-28 h), ultradian (<20
h), and infradian (>28 h). For instance, the 27-34 days cycle period of the women’s men-
strual cycle is considered as an example of infradian rhytms [Presser, 1974]. For particular
cases such as the emergence of the periodical cicada, chronobiologists speak of “multiyear
cycles”. Those kinds of long-term cycles are under study and are considered as far from
being fully understood: “Multiyear cycles, such as the emergence of the periodical cicada
(Magicicada spp.) every 13 years in the south and midwestern USA or every 17 years in
the northeastern USA, the 8- to 10-year population cycles of the ruffed grouse (Bonasa
umbellus) in Minnesota, and the 15- to 120-year cycles in flowering of various species of
bamboo, are among the spectacular rhythmic events found in nature that are little un-
derstood” [Koukkari et al., 2006, p. 8. My emphasis]. Contra Baker, this claim seems
to suggest that there is no consensus within the biologists on the fact that the peculiar
life-period of cicadas has been sufficiently explained.
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commit himself to the sort of realism he wants to avoid. Let’s consider them

one by one (I will indicate them with KS1, KS2 and KS3).

(KS1) Van Fraassen’s solution to the classical problem of explanatory

asymmetries in explanation comes, as in the case of rejection of explanation

requests, from a contextual factor, namely the “contextual relevance”. The

classical example of the flagpole and the shadow, seen in the previous section

during the discussion of the D-N model, is paraphrased by Van Fraassen us-

ing the story of the tower and the shadow. Here is the story36. Van Fraassen

and his friend, the “Chevalier”, are enjoying a cup of tea together while sit-

ting on the Chevalier’s terrace. There is a tower in the garden, and this

tower casts a long shadow on the ground. When asked why the shadow of

the tower has such a long length (‘Why must that tower have such a long

shadow?’), Van Fraassen’s host says that it is cast by the tower, of a certain

height, and he adds that the tower was built to that height on that particular

spot for certain historical reasons. The tower had been erected in honour of

Queen Marie Antoniette, in 1930, and at that time the Queen would have

been one hundred and seventy-five years old, so the tower had been built

exactly that many feet high. This, plus laws of trigonometry, the fact that

light travels in straight lines and the sun is not alterable in its course, con-

cludes the Chevalier’s explanation for the length of the shadow. That is his

explanation. However, the Chevalier’s housemaid has a different version of

the facts: “That tower marks the spot where he [the Chevalier] killed the

maid with whom he had been in love to the point of madness”. Moreover,

she adduces that the Chevalier has built the tower of that precise height in

order the shadow would cover the terrace where he first proclaimed his love,

every setting sun. According to Van Fraassen, the explanation (the answer

to the question “Why is the shadow so long?”) given by the Chevalier, based

on laws of trigonometry and the straight path of light rays, is exactly on a

par with the explanation (the answer to the question “Why is the tower so

high?”) given by the housemaid and based on the love-story between the

36See [Van Fraassen, 1980, p. 132-134] for the whole anecdote.
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Chevalier and the maid. The moral is very clear: in this case, it is appro-

priate to explain the tower’s height in terms of the length of the shadow

it casts. The particular context will fix a particular relevance relation (for

instance, the relevance relation is given by the intentions of the Chevalier in

building the tower), and this relevance relation will specify the direction of

the explanation. To put it in other words, the asymmetries are accounted for

simply by taking into consideration the contextual character of the relation

of relevance for a why-question. What determines the relevance is specifically

the interest of the questioner and that of the audience (the interlocutors),

i.e. the context. Therefore asymmetries are reversible through a change in

context, as the story of the tower and the shadow shows.

In Posterior Analytics (I.13) Aristotle gives examples of asymmetries.

In Van Fraassen’s reading of Aristotle, the four causes represent the rele-

vance relations (or explanatory factors) for a why-question; thus the same

why question, if formulated in different contexts, is a request for different

types of relevance relations37. Van Fraassen refers to the following passage

from Aristotle (Posterior Analytics II.11) as a way of taking into account the

importance of the context in requesting explanatory factors for a particular

why-question:

It is possible for the same thing to be the case both with some aim

and from necessity -e.g. the light through the lantern; for the finer

body passes through the larger pores both from necessity (if light

comes about by passing through), and with some aim (in order that

we shan’t stumble) [Aristotle, CWA 1984, p. 156]

In their analysis Kitcher and Salmon claim that, contrary to what Van

Fraassen pointed out, his theory of explanation does not solve the traditional

problem of asymmetries. Their point is that the change in context can reverse

37However, differently from Van Fraassen, Aristotle’s approach to explanation treats
explanation as objective, such that x explains y just in case (i) x and y are states of affairs
in the world, and (ii) states of affairs of the x-type cause states of affairs of the y-type. See
[Shields, 2007, p. 40] for a discussion of Aristotle’s conception of explanation in natural
philosophy.
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the direction of explanation, but every asymmetry that could be generated

in Hempel’s model is reproducible in Van Fraassen’s. Therefore pragmatic

constraints cannot really eliminate spurious explanations generated by the

asymmetries38.

For instance, take the case of the tower and the shadow. By considering

the why-question Q “Why is the height of the tower h?”, we can construe

the relevance relation R to be that of intentional relevance (exactly as Van

Fraassen does); in this way, the proposition “the tower was built on the spot

where he [the Chevalier] killed the maid and it was build of that precise

height in order the shadow would cover the terrace where he first proclaimed

his love” (the core A of the answer) will be relevant to the topic Pk of Q. The

relation R holding between A and 〈Pk, X〉, where X is a collection of propo-

sitions ascribing different heights, can be seen as a ‘censored’ D-N derivation,

i.e. a relation that holds between A and 〈Pk, X〉 just in case there is a D-N

argument that derives the height of the tower (topic Pk as explanandum)

from A together with additional premises in K(Q) (the explanans)39. Now,

if we want to admit the proposition “the height of the tower is h” as the

core of the answer to the why-question ‘Why is the length of the shadow l?”,

K(Q) must also contain the proposition ascribing the elevation of the sun

and the laws of propagation of light. Thus, according to the authors, “Van

Fraassen’s theory allows explanations which correspond to those D-N expla-

nations which intuitively run the wrong way”, and this should be considered

as a mistake [Kitcher et al., 1987, p. 328]. As the D-N model, in fact, Van

Fraassen’s approach does not privilege the direction of the explanation which

gains some sort of explanatory potential from the causal objective relevance

relation, and thus it does not distinguish the explanatory merits of the two

derivations. This is why they consider Van Fraassen’s solution of the prob-

lem as a mere presupposition of the solution to the problem, and regard Van

38However, let me note that Van Fraassen would say that there is nothing spurious
to eliminate, because the “wrong direction” of the explanation should be considerate as
legitimate too.

39K(Q) is a subset of our knowledge K.

100



Fraassen’s claim to have solved the problem of asymmetry as incorrect.

(KS2) The second and core criticism to Van Fraassen’s theory raised by

Kitcher and Salmon is strictly linked to the remarks of the previous lines

and points to the fact that the pragmatic approach is subject to trivializa-

tion. They illustrate this by showing formally that “any true proposition A

can be an indispensable part of an explanation of any topic Pk (with respect

to a constrast class X that contains Pk and any assortment of false propo-

sitions), and, indeed, that it gets highest marks as an explanation of Pk”

[Salmon, 1989, p. 143]40. This means that, for every context and for any pair

of true propositions, the first proposition explains the second (i.e. the first

proposition is the core of the only explanation of the second). Let’s call this

claim

(TRV1) For any pair of true propositions A and B, there is a context in which

A explains B

They offer the following astrological example which, they claim, has the

status of a legitimate and acceptable explanation in Van Fraassen theory.

The why-question is given by:

• Pk = ‘JFK died on 11/22/1963’

• X = { ‘JFK died on 1/1/63’; ‘JFK died on 1/2/63’; ..., ‘JFK died on

12/31/1963’; ‘JFK survived 1963’ }

• R = a relation of astral influence defined as a relation between propo-

sitions describing the positions of the stars and planets at the time of

a person’s birth and propositions about that person’s fate.

The answer to the why question might have as core A a true description

of the positions of the stars and planets at the time of JFK’s birth. This,

joined with an appropriate astrological theory, would make possible to infer

that JFK died on that precise day. Such a piece of information will answer

40See [Kitcher et al., 1987, p. 319-322] for the formal argument.
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the original why-question and will be maximally telling. Nevertheless, even

if Van Fraassen theory allows an expanation of JFK’s death in astrological

terms, it is quite reasonable to reject (at least in the context of modern sci-

ence) this answer because astral influence has nohing to do with JFK’s death.

Salmon and Kitcher’s diagnosis is that, in order to escape trivialization

(TRV1), Van Fraassen “needs to supplement his theory of explanation with

an account of relevance relations” [Kitcher et al., 1987, p. 323].

(KS3) However, and here is their third criticism, if Van Fraassen adopts

some objective relevance relation among propositions (for instance in order

to avoid examples such as the astrological example), then he will be commit-

ted precisely to the kind of realism he would like dismiss in his The Scientific

Image, i.e. the scientific realism that claims for objective relevance relations

among propositions a scientific theory must capture to be explanatory (“[the]

request for explanation to which realists typically attach an objective valid-

ity which anti-realist cannot grant” [Van Fraassen, 1980, p. 13]). Therefore,

according to Salmon and Kitcher:

Van Fraassen would have to revise his account of what it is to accept a

scientific theory by adding the idea that acceptance involves believing

that the theory has explanatory power as well as believing that it

saves the phenomena (or, perhaps, believing that the theory offers the

best tradeoff between saving the phenomena and having explanatory

power). [Kitcher et al., 1987, p. 330]

An attempt to defend Van Fraassen’s solution to the problem of asym-

metries from the attacks of Salmon and Kitcher has been made by Alan

Richardson [Richardson, 1995]. Without entering in the full details of his

paper, let me observe that his defense of Van Fraassen is a reply to the three

main points raised by Kitcher and Salmon. Behind the first criticism of those

authors, as we have seen in the foregoing lines, there is the assumption that

the difference in explanatory potential in the asymmetry problem is due to

the fact that one direction of the explanation gest the objectively asymmet-

ric causal order right (the length of the shadow is causally conditioned by
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the height of the tower), i.e. the objective relevance relation which provides

explanatory power is a relation of causal order. By leaving his relevance

relation R without any formal constraint, Van Fraassen is accused of being

not able to account for this or other kinds of objective relevance relations,

and this leaves the original problem of asymmetry without a ‘real’ solution.

Moreover, if we agree with Salmon and Kitcher, this lack of characterization

for R leaves Van Fraassen’s account open to trivialization. However, Alan

Richardson points out that, in his story of the tower and the shadow, Van

Fraassen is not trying to provide any kind of objective relevance relation

among propositions which, for Kitcher and Salmon, a scientific theory must

capture (in order to have explanatory power and support that scientific re-

alism the two authors seem to argue for). What he is offering is a totally

new (pragmatic) approach to the problem. In Van Fraassen the theories are

used in the form of certain propositions to provide an answer to a particular

question raised in a particular occasion, thus the asymmetries do not come

out from some objective (causal, for instance) structure. What is more, Van

Fraassen does not consider explanations as arguments, then the solution to

the asymmetry problem as illustrated in the tower and the shadow story

could not be transposed in the Hempelian language (as Kitcher and Salmon

do), but should be looked through the lens of Van Fraassen’s pragmatic ma-

chinery. In the tower and the shadow story, we are interested in judging the

explanatory value of the statements:

(8) The height of the tower explains the length of the shadow

(9) The length of the shadow explains the height of the tower

In the opinion of Richardson, the crucial point is that, pace Kitcher and

Salmon,

[...] for Van Fraassen, (8) is not an objective fact about the causal

structure of the world that our scientific theories seek to capture and

which, if captured, provides additional reason to believe these theo-

ries; nor (9) is objectively false. Neither (8) is a theoretical judgement
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made from within some particular scientific theory. Rather, judge-

ments like (8) and (9) are themselves radically context dependent

judgements about the relation of information provided by scientific

theories to types of information requested by people in particular con-

texts. [Richardson, 1995, p. 113]

The fact that the asymmetries in explanation are, at least in certain

cases, reversible comes from the fact that when the context is fixed, the

relevance relation is contextually fixed also (because we use information that

is relevant to a particular question on a particular occasion)41; coming back

to the example of the tower and the shadow, we have that in the first context

proposition (8) is assertable and (9) is not, while in the second context (9) is

assertable and (8) is not42. For Richardson (and presumably Van Fraassen)

this is enough to understand the asymmetric structures that claims like (8)

and (9) have.

The second point, the defense of Van Fraassen’s model from Kitcher and

Salmon’s trivialization (TRV1), is based, again, on the contextual-dependent

41Van Fraassen claims that there exist cases of asymmetries which cannot be reversed
[Van Fraassen, 1980, p. 132]. A typical example is that of red shift and galactic motion.
It is generally believed by cosmologists that the distant galaxies are receding from us at
high velocities. The main evidence for this hypothesis is the fact that the light from these
galaxies is shifted toward the red end of the spectrum (this phenomenon is called ‘red-
shift’). Now, given classical physics, the velocity of the galaxy explains the red shift. But
here the asymmetry cannot be reversed because there is a context in which the velocity of
the galaxy can be used to explain the red shift, while on the contrary there is no context
in which the red shift explains the velocity of the galaxies. In fact, the fact that the light
from these galaxies is shifted toward the red end of the spectrum does not explain why the
galaxies are traveling away from us (no relevence relation can be adduced in this context).
The recession of the galaxies is explained on the basis of the big bang, and not by the red
shift.

42The first context is that in which the Chevalier understands the question of the pro-
tagonist as a request of physical details of why the shadow has that length. Consequently,
the relevance relation is fixed so as the answer to the question “Why is the shadow so
long?” requires the causal details. It is quite evident that if we ask “Why is the tower so
high?” in this context, with the same relevance relation, to cite the length of the shadow
is irrelevant. Hence (9) is not assertable. On the other direction, the maid answers a
question about the height of the tower in a context which fixes the relevance relation as
psychological details about why the Chevalier has built a tower so high. She answers the
question by adducing the Chevalier’s desire that the shadow be long enough to cover the
terrace. The interlocutors have fixed the relevance relation and, as a result, in this context
(9) is assertable and (8) is not.
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character of the pragmatic theory. With respect to (TRV1), Richardson

observes that this claim is perfectly consonant to Van Fraassen’s theory, and

that it does not represent a trivialization. Van Fraassen would accept (TRV1)

because from the point of view of his pragmatic theory this is perfectly sound.

However, Richardson observes, by offering their astrological example Salmon

and Kitcher seems to be making a claim stronger that (TRV1), and precisely

they are claiming that:

(TRV2) Within a given context, for any pair of true propositions A and B, A

explains B because it is always possible to find an adequate relevance

relation (i.e. a relevance relation which makes the answer ‘Because A’

maximally telling)43

Now, if Kitcher and Salmon are attacking Van Fraassen by claiming

that the pragmatic theory implies (TRV2), Richardson stresses how, in Van

Fraassen, the context does not guarantee the availability of every extension-

ally definable relations among propositions as relevance relations. It is the

context in which the interrogative occurs that cointain certain theories and

[...] these theories tell us what is and isn’t scientifically relevant to

the occurrence of Pk. It is from among these scientifically relevant

factors that the relevant relation of the question expressed by that

interrogative must come. [Richardson, 1995, p. 121]

Therefore he dismisses Kitcher and Salmon’s trivialization (TRV2): the

why-question, in their counterexample (JFK), does not arise because the

astral influence relation is scientifically irrelevant to the occurrence of the

topic44:

43Differently from (TRV1), the claim (TRV2) is not explictly made by Salmon and
Kitcher. However, this is what they seem to suggest with their astrological example, and
what Alan Richardson takes as their ‘strong’ claim against Van Fraassen. In think that
Richardson’s reading of Kitcher and Salmon makes perfectly sense and makes fully explicit
their criticism.

44Recall that a question Q arises in context K just in case the presuppositions of Q are
consistent with K: K implies the central presupposition (Pk; and for all i 6= k, not Pi;
and A) and K does not imply the denial of any presupposition (a), (b), (c): (a) Pk is true;
(b) each Pi in X is false if i 6= k; (c) there is at least one A true which bears R to 〈Pk, X〉.
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No astral influence relation between propositions describing positions

of planets and propositions about personal fate is in the models of

modern science. [...] No relation containing 〈A, 〈Pk, X〉〉 exists and,

hence, no such question arises. [Richardson, 1995, p. 122]

Richardson’s point is that Kitcher and Salmon’s relation of astral influ-

ence does not exist in the present context of modern science, and then no

astrological answer will be relevant and maximally telling to the question

“Why did JFK die on 11/22/1963?”. However, he observes, there exist other

contexts as well. In a different context (not scientific, I suppose!) in which

the conversants share the belief in the observational adequacy of some as-

trological theory, it is perfectly reasonable to accept and use a relation of

astrological influence as to answer the same why-question. It should be ob-

served that Van Fraassen’s constructive empiricism has, at its heart, the

notion of empirical adequacy, taken to be the aim of science and character-

ized in model-theoretic terms. A theory is said to be empirically adequate

if it “saves the phenomena” by representing that phenomena in terms of ap-

pearances which are effectively embedded in the theory45. To say that a

particular (astrological) theory explains a fact (JFK’s death) does not entail

that that the theory be true or empirically adequate. This emerges very

clearly from Van Fraassen’s methodological remarks:

So I conclude that (a) the assertion that theory T explains, or provides

an explanation for, fact E does not presuppose or imply that T is true

or even empirically adequate, and (b) the assertion that we have an

explanation is most simply constructed as meaning that we “have on

the books” an acceptable theory which explains. I shall henceforth

adopt this construal. [Van Fraassen, 1980, p. 100]

45The notion of embedding used here is a mathematical one in the sense that there is
an isomorphism (a mapping that is one-to-one and onto) between the appearances and
sub-structures of the theory, known as the “empirical substructures”. Roughly, a theory
is said to be empirically adequate if all of its claims about observables are true. To use
Van Fraassen’s words: “A theory is empirically adequate exactly if what it says about the
observable things and events in this world, is true – exactly if it saves the phenomena”
[Van Fraassen, 1980, p. 12].
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In the specific example of JFK’s death, when we say that the astrological

theory explains JFK’s death on that precise day, this does not mean that

the astrological-circle-explanation provides some sort of correspondence be-

tween the astrological theory and JFK’s death (the observable phenomenon)

in astrological terms. To put it in a more ‘pragmatic’ form: the members of

the astrological-circle use the astrological theory to explain JFK’s death (as

written on their astrological books), thus providing an explanation, even if

there is no correspondence between the astrological theory and JFK’s death

en tant que fact (i.e. the theory is not empirically adequate). This would

save Van Fraassen from Kitcher and Salmon attacks.

Let’s move to David Sandborg’s criticism of Van Fraassen’s theory. His

analysis concerns the possibility for Van Fraassen’s pragmatic account of

dealing with mathematical explanations within mathematics, where the lat-

ter come in the form of proofs. Thus the relation R, for the specific case

considered by Sandborg, is a relation between a mathematical statement Pk

and a class of mathematical statements X. Keep in mind that the criteria of

evaluation in the original pragmatic account were expressed by

1. The fact that A itself is more probable (than other reasons) in light of

our knowledge K.

2. The probability that the answers favor the topic Pk against the other

members of the contrast class relative to background knowledge (favor-

ing criterion).

3. The fact that the answers are made wholly or partially irrelevant by

other answers that could be given.

In order to test Van Fraassen’s theory on a case of mathematical expla-

nations within mathematics, Sandborg presents an example of proof from

Polya’s book Patters of Plausible Inference [Polya, 1968, p. 147]. The theo-

rem to be proved is

107



Theorem 2.1. If the terms of the sequence a1, a2, a3, ... are non-negative real

numbers, not all equal to 0, then
∑∞

1 (a1a2a3 ... an)
1
n < e

∑∞
1 an.

To prove the theorem we need to introduce an auxiliary sequence {ci}
by the formula c1 c2 c3 ... cn = (n + 1)n for n = 1, 2, 3 ... . If the sequence

is introduced in the first step of the proof we are able to go on and, after a

series of inequalities and the observation that the sequence defining e – whose

general term is (k+1
k

)k – is increasing, prove the theorem. The proof runs as

follows:

Proof. We introduce the auxiliary sequence {ci} in
∑∞

1 (a1a2a3 ... an)
1
n and

we obtain the equality:

∞∑
1

(a1a2a3 ... an)
1
n =

∞∑
1

(a1c1a2c2a3c3 ... ancn)
1
n

n+ 1
(2.1)

By using the following inequality between the arithmetic and the geomet-

ric means

(a1a2a3 ... an)
1
n ≤ (a1 + a2 + a3 + ... + an)

n
(2.2)

we obtain:

∞∑
1

(a1c1a2c2a3c3 ... ancn)
1
n

n+ 1
≤

∞∑
1

(a1c1 + a2c2 + a3c3 ... + ancn)

n(n+ 1)

=
∞∑
k=1

akck

∞∑
n=k

1

n(n+ 1)

=
∞∑
k=1

akck

∞∑
n=k

(
1

n
− 1

n+ 1
)

=
∞∑
k=1

ak
(k + 1)k

kk−1

1

k

< e

∞∑
k=1

ak

Even if the proof is rigorous and leads to the desired result, it leaves us
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with a deep sense of dissatisfaction. We ask ourselves: where does the aux-

iliary sequence come from? The step of introducing the sequence {ci} is a

deus ex machina step, as Polya writes, because it is visibly important but

its connection with the aim is not visible at all. The sequence “appears as a

rubbit pulled out of a hat” [Polya, 1968, p. 147] and we have the impression

that it comes out from nowhere. This is why Polya tried to reconstruct the

proof in a different way, as to make the introduction of {ci}, and thus the

derivation, more understandable. He thus provided a mathematical explana-

tion of the proof by following successive steps. Since an understanding of his

procedure is important for what follows, I will shortly resume it46.

First of all, Polya observed that theorem 2.1 could be seen as a lemma

of the theorem “if the series with positive terms
∑∞

n=1 an is convergent, then

the series
∑∞

n=1(a1a2a3 ... an)
1
n also converges”. By focusing on the term∑∞

1 (a1a2a3 ... an)
1
n , we can apply the inequality between the geometric and

the arithmetic means (equation 2.2), thus obtaining:

∞∑
n=1

(a1a2a3 ... an)
1
n ≤

∞∑
n=1

(a1 + a2 + a3 ... + an)

n
(2.3)

=
∞∑
k=1

ak

∞∑
n=k

1

n
(2.4)

This result nevertheless is of no help for what we want to prove, because

the series
∑∞

n=k

1

n
diverges. Polya’s next step, which he calls the ‘learning

from failure step’, consists in individuating what was wrong with the forego-

ing reasoning. The series a1, a2, ..., an converges, then an is small when n is

large. The mistake in the previous procedure is quite evident if we observe

that the two sides of the inequality 2.3 will tend to somewhat not equal. Thus,

to apply the inequality 2.2 to those too unequal quantities was not a good

choice. What we need is to balance the two sides (i.e. making the terms in

the inequality more equal) by introducing some increasing compensating fac-

tors. We thus multiply ai by some increasing factor, and by doing so we have

46For the complete argument see [Polya, 1968, p. 148-152].
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modified our approach to the problem (step three). Now, what quantities

do we use as increasing factors? Polya proposes to consider the very general

quantities 1λa1, 2
λa2, 3

λa3, ..., n
λan, where the most advantageous value of λ

is to be found. By using those quantities as increasing factors we obtain:

∞∑
n=1

(a1 a2 a3 ... an)
1
n =

∞∑
n=1

a11
λ · a22

λ · ... · annλ

(1 · 2 · ... · n)
λ
n

(2.5)

≤
∞∑
n=1

a11
λ + a22

λ + ...+ ann
λ

n(n!)
λ
n

(2.6)

=
∞∑
k=1

akk
k

∞∑
n=k

1

n(n!)
λ
n

(2.7)

The problem, at this point, is that we cannot calculate the last sum. If

we proceed by approximation, from the fact that n(n!)
1
n ≈ ne−1 we have

∞∑
n=k

1

n(n!)
λ
n

≈ eλ
∞∑
n=k

n−1−λ

≈ eλ
∫ ∞
k

x−1−λdx

= eλλ−1k−λ

Introducing this approximation into 2.7, we arrive very close to the desired

result:

∞∑
n=1

(a1 a2 a3 ... an)
1
n ≤ C

∞∑
k=1

ak (2.8)

where C is a constant (eλλ−1). But we are now in a position to choose a

value for λ, and precisely we try with that value that makes eλλ−1 a minimum.

By differential calculus we have λ = 1. We can look back at the original

question about the choice of increasing factors (call this step four or ‘looking

back step’), and assume that the choice of a compensating factor multiplying

an as n, or some quantity similar to n when n is large, could be a good choice
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in order to reach the value C = e in equation 2.8. However, as we have seen,

to fix λ = 1 leads to something that we are not able to calculate. One of the

ideas in the foregoing passages was to to leave λ indeterminate. So, Polya

asks, why not introduce more flexibility in our strategy? This is why in the

final step of his explanation (‘more flexibility step’) Polya suggests to leave

the compensating factor that multiplies an indeterminate (call it cn), thus

obtaining

∞∑
n=1

(a1 a2 a3 ... an)
1
n =

∞∑
n=1

a1c1 · a2c2 ... · ancn
(c1 · c2 · ... · cn)

1
n

(2.9)

≤
∞∑
n=1

a1c1 + a2c2 + ... + ancn

n(c1c2 ... cn)
1
n

(2.10)

=
∞∑
k=1

akck

∞∑
n=k

1

n(c1c2 ... cn)
1
n

(2.11)

Nevertheless, now we want to find such a sequence ci. In order to use the

advantageous consideration on λ and escape the problem with divergent se-

ries, we can use a sequence which is asymptotically equivalent to 1, 2, 3, ..., n,

i.e. a sequence ci which is close to 1, 2, 3, ..., n in the limit. Moreover, we need

an evaluation or a simplification of the summation
∑∞

n=k
1

n(c1c2 ... cn)
1
n

which

appears in 2.11. At this point we use our previous knowledge about series

and we observe that

∑ 1

n(n+ 1)
=
∑

(
1

n
− 1

n+ 1
) (2.12)

and
∞∑
n=k

(
1

n
− 1

n+ 1
) =

1

n
(2.13)

Finally, by choosing the sequence {ci} as c1 c2 c3 ... cn = (n+1)n , the sum∑∞
n=k

1

n(c1c2 ... cn)
1
n

takes the form 2.13 and we can simplify and proceed in the

proof. Moreover, we observe that n+ 1 ≈ n for a large n, and cn = (n+1)n

nn−1 =

(1 + 1
n
)nn ∼ en (cn is asymptotically proportional to n and the number

e arises). This concludes the explanation of why we have introduced the
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sequence ci, then we can now move to the formal proof with more confidence.

As Polya affirms: “now, we may understand how it was humanly possible to

discover that definition of ci which appeared as a deus ex machina. The

derivation became also more understandable” [Polya, 1968, p. 152].

Is Van Fraassen’s theory able to account for mathematical explanations

such as Polya’s? As we have seen, Polya’s explanatory reasoning aims to

justify the introduction of the auxiliary sequence {ci} into the heuristic of

the proof. Thus, it is quite natural to formulate our demand for explanation

under the form of a why-question, and precisely: “Why is it appropriate

to introduce the {ci} sequence in the proof?”. This why-question has, in

Van Fraassen’s sense, two possible readings: 1) “Why should a sequence be

introduced?”, and 2) “Why exactly this sequence?”. Prima facie, as Sandborg

observes, it might seem that two possible satisfactory answers to 1) and 2)

would be: (1*) An auxiliary sequence was used in order to replace a divergent

series by a convergent one; (2*) the particular sequence was chosen because it

had a favourable growth behaviour and it allowed to simplify a crucial term

in the derivation [Sandborg, 1998, p. 612]. However, as Sandborg points out:

though this why-question analysis is useful in pointing out how Polya’s

explanation performs two distinct functions, it does not correctly ac-

count for what makes Polya’s explanation good. [Sandborg, 1998, p.

612. My emphasis]

Since what is important for our discussion about MEPP are the con-

clusions which follow from Sandborg’s analysis, I will not fully address his

treatment of Polya test-case here. However, these conclusions will justify

the previous quotation about the difficulties Van Fraassen’s theory has in

accounting for mathematical explanations such as Polya’s.

Sandborg distinguishes two kinds of difficulties (α and β below) with

Van Fraassen’s theory of explanatory evaluations as extended to the case of

mathematical explanations. Moreover, a third and more general problem (γ)

is referred to any approach to explanation in terms why questions:

(α) Van Fraassen’s theory can’t account for mathematical answers to a
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common type of why questions, in which the members of the contrast

class are mutually exclusive (exclusive contrast-questions have the form:

“Why X rather than Y ?”, where X and Y are mathematical statements.

Ex: Why does 1− 1
3

+ 1
5
− 1

7
converge to π

4
rather than some other real

number? Other sequences could also converge to the same number)47.

(β) It cannot account for explanatory proofs, because mathematical expla-

nations in the form of proofs are not recognized as answers by Van

Fraassen’s theory48.

(γ) A why-question approach misses an important aspect of the context in

which mathematical explanations are given, and precisely the concep-

tual resources the questioner has available to analyze the situation.

I will consider these points one by one. However, as in the case of Kitcher

and Sandborg’s criticism, the points raised by Sandborg are not independent

and deal with difficulties which are strictly interconnected. Let’s start from

(α).

(α) Keep in mind Van Fraassen’s three criteria of evaluation, and focus

on a why-question in which the members of the contrast class are mutually

exclusive. In this case, following Van Fraassen, any formally correct proof of

the (mathematical) topic will be considered as telling with respect to such a

question; moreover, every proof which follows from accepted mathematical

propositions automatically will attain the maximal score (i.e. it will be con-

sidered as maximally probable). The reasoning is quite straightforward.

47It should be observed here that the set of exclusive contrast-questions is an important
subset of the why-questions. However, in general, a constrast class might consist of mem-
bers which are not mutually exclusive. For instance, this is the case of Polya’s question
“Why does this sequence serve to complete the proof?”, which is not an exclusive contrast
question since other sequences might be useful as well as {ci}.

48Again, this criticism is not explicitly addressed to Polya’s case, where the expla-
nation does not come under the form of proof. However, proofs are commonly offered
as explanations in mathematics (for instance, see [Steiner, 1978a], [Weber et al., 2002],
[Mancosu, 1999] and [Hafner et al., 2008]). Observe that proof is neither necessary
(Polya’s formal proof is not explanatory) nor sufficient (Polya’s explanation is not a proof)
for explanation.
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Consider, as in Polyas’s case, a (correct) formal proof A which establishes

the truth of the topic (for instance, the initial proof we gave before Polya’s

explanation). This proof follows from accepted mathematical propositions

plus some axioms. If we consider the set formed by those axioms plus the

accepted mathematical propositions as a subset of our mathematical back-

ground knowledge, and we call it K(Q), the proof will be judged maximally

probable with P (A|K(Q)) = 1. The topic, having being proved, will have

probability 1, while the other members of the contrast class will have null

probability49. Therefore there is no possibility of having other more proba-

ble answers, or answers which favour the topic better or screen it off. Here

we are faced with a trivialization: from the point of view of Van Fraassen’s

theory of explanatory evaluation, every formally correct proof of the topic

is considered explanatory when we are faced with exclusive-contrast mathe-

matical questions. However, we know from the mathematical practice that

some proofs explain better than others, and this suggests that an evaluation

of mathematical explanation in mathematics should not rely on probability

calculus, but on some other criteria. Although the why-question in Polya’s

case was not an exclusive contrast question, Polya’s example is quite repre-

sentative of the necessity to account for the explanation by going behind the

mere formal aspects of the proof and choosing between a range of possibilities

(the sequence ci was not the unique possibility). A possible solution to this

problem could be to fix some constraint on the relevance relation, in order to

distinguish explanatory from non-explanatory answers to exclusive-contrast

why questions. But we have seen in the previous pages and in Van Fraassen’s

treatment of asymmetric explanation that Van Fraassen does not introduce

such a constraint and seems to favour an unrestricted relevance relation.

Consequently, the trivialization which Sandborg underlines has something in

49Let me comment here that this is not the case if we accept that there exist visual
proofs. The particular status of visual proofs would suggest an approach (and a criterion
of evaluation) different from that used for formal proofs. Nevertheless, the problem of
evaluation arises again: what are the criteria which permit us to say that a visual proof is
better than another visual (or formal) proof? We are back to our original question: when
does a mathematical proof explain?
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common with the sort of trivialization which was pointed out by Salmon and

Kitcher (trivialization (TRV 2)) and which concerned Van Fraassen’s the-

ory of telling answers. In fact, recall that in their analysis the trivialization

TRV 2 pointed to the fact that within a fixed context we can construct ev-

ery answer to every question –were the answer and the question are both

true propositions–, by fixing a suitable relevance relation in order for the an-

swer to be maximally telling to that why-question50. Besides the similarity

with that criticism, by considering mathematical explanations the difficulty

is even bigger and a defense such as that of Alan Richardson cannot save Van

Fraassen’s theory of telling answers from trivialization. This is because, even

if we may dismiss the contrived example of JFK by saying that astrology is

“bad science” (i.e. the astral influence relation is scientifically irrelevant to

the occurrence of the topic where we consider as context a scientific commu-

nity), we cannot dismiss a proof as “bad-maths”. The moral here is, again,

that in order to avoid his theory being trivialized, Van Fraassen needs some

sort of restriction on his relevance relation in order to have a genuine rele-

vance relation (not gerrymandered). However, also this possibility (of fixing

some constraint on the relevance relation) seems to not do the trick in the

case of mathematical explanations by proofs. As Sandborg observes:

Also, the reason we do not consider some proofs to be explanatory

don’t seem to have to do with relevance at all, or at least not rele-

vance that the questioner can specify in advance. An early unintel-

legible proof of a result (such as one using ’brute force’ calculational

techniques) may be obviously relevant to that result, even if consid-

ered non-explanatory, while an explanatory proof employing more ab-

stract mathematical resources may not be so obviously relevant; it

may not be immediately clear that the resources used are appropriate

to the problem. Indeed, discovering these resources may be a large

50In their JFK’s example, by constructing an appropriate relevance relation, the answer
together with a selected subset of background knowledge will imply the topic of the ques-
tion and the negations of all members of the constrast class. Therefore the answer will be
considered as maximally telling.
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step towards solving the problem in the first place. No relevance rela-

tion specifiable at the outset would be able to distinguish between ex-

planatory and non-explanatory proofs, because what is relevant to the

explanandum is not prior to the explanation itself. [Sandborg, 1998,

p. 615]

Let’s now switch to (β). In point (α) we have considered a proof as

a (valid) answer to a why-question and we have put in evidence as Van

Fraassen’s theory consider all proofs as explanatory under its criteria of eval-

uation. The second problem (β) highlighted by Sandborg is connected to

(α) but addresses a more delicate aspect of Van Fraassen’s treatment of ex-

planation. More precisely, it concerns the descriptive form an explanation

(an answer) must assume, in Van Fraassen’s theory, in order to support the

topic.

As Van Fraassen himself points out:

If you ask a scientist to explain something to you, the information he

gives you is not different in kind (and does not sound or look different)

from the information he gives you when you ask for a description. [...]

To call an explanation scientific, it to say nothing about its form or

the sort of information adduced, but only to say that the explanation

draws on science to get this information (at least to some extent)

and, more importantly, that the criteria of how good an explanation

it is, are being applied using a scientific theory [Van Fraassen, 1980,

p. 155-156]

To evaluate an answer, in Van Fraassen’s pragmatic account, is to con-

sider the contribution that it makes to favouring the topic when it is used to

supplement some subset K(Q) of our background knowledge. If we pass to

mathematical explanations, it is then natural to ask whether Van Fraassen’s

theory can account for answers coming under the form of proofs.

In such cases it is quite natural to consider our background knowledge

K as either the set of axioms of a theory, or their deductive closure. The

topic “theorem” will then be either implied or contained in K. Nevertheless,
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if we restrict, as in the empirical case, K to some part K(Q) consisting in a

smaller set of axioms or its deductive closure, then an answer to the math-

ematical why-question will be some proposition which, added to K(Q), will

imply the topic “theorem”. So considered, this answer represents that part

of logical information missing for the theorem to be true: a missing axiom,

or some statement that imply the theorem51. Therefore, Sandborg observes,

“Van Fraassen’s theory suggests that mathematical explanations would have

to be analyses of the preconditions required for a theorem to be true, such as

showing that a theorem depended on the axiom of choice” [Sandborg, 1998, p.

616]. Consequently, through the lens of Van Fraassen’s theory, mathematical

explanation reduces to a form of analysis of axioms required for theorems, a

method of deducing consequences from previously given propositions. There

is no room for new information, because the explanatory activity admitted

assumes the form of a display of consequences of what we have already ac-

cepted as given52.

However, to deduce consequences from previously given propositions is

far from being considered an explanatory activity in mathematics53. The ex-

planatory activity in mathematics often assumes a very different form. For

instance, in his explanation Polya does not pick out any proposition that, in

conjunction with part of his background knowledge, leads to the result. This

suggests that the explanatory activity in mathematics does not assume that

form Van Fraassen’s pragmatic theory seems to require, and consequently this

theory cannot account for explanatory mathematical proofs. As Sandborg

51In passing, let me note that a theory of why-questions focused on explana-
tions as providing additional logical information is presented by Hintikka and Halonen
[Hintikka et al., 1995].

52Furthermore, Sandborg observes that a “proof does not fill in any missing information,
but instead draws out consequences from previously given propositions” [Sandborg, 1998,
p. 616]. And this seems to constrast with Van Fraassen’s picture of explanation, which
considers that an answer must provide some extra-information which is not present in the
subset K(Q) of our background knowledge.

53Observe that this is exactly the problem which emerges if we consider the D-N ac-
count in the context of mathematical explanations within mathematics: by admitting
mathematical explanations in the D-N account (with the adequate changes), every math-
ematical proof turns to be an explanation because it fits perfectly within the deductive
schema.
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observes, “any theory [of explanation] that takes explanations to increase our

propositional knowledge will tend not to regard any proofs as explanatory,

since they do not do this, but at best display the consequences of what we

have already accepted as given” [Sandborg, 1998, p. 616].

A third and more general remark (γ) raised by Sandborg follows directly

from points (α) and (β) and concerns the impossibility for a why-question

approach (a general why-question approach, not only Van Fraassen’s) of ac-

counting for the conceptual resources available to the questioner in the anal-

ysis of the situation. Let me illustrate the situation with the aid of Polya’s

test case.

Consider again the why-question answered by Polya: “Why is it appro-

priate to introduce the ci sequence in the proof?”. And remember the two

possible readings of it: 1) “Why should a sequence be introduced?”; 2) “Why

exactly this sequence?”. Polya’s explanation clearly addressed both readings,

then it should be considered as formed by the two answers. His answers are,

respectively: (1*) An auxiliary sequence was used in order to replace a di-

vergent series by a convergent one; (2*) the particular sequence was chosen

because it had a favourable growth behaviour and it allowed to simplify a

crucial term in the derivation. However, in completing his explanation by

answering 2), Polya showed how the growth rate of ci was favourable for

completing the proof, but it did not show that this sequence was the only

appropriate to use (other sequences with the same growth rate were good

candidates as well). The sequence was chosen simply because it allowed to

simplify the term
∑∞

n=k
1

n(c1c2 ... cn)
1
n

. Hence, though it provided a solution to

our initial puzzle, Polya showed that this sequence worked for our purpose,

but he did not show why it worked. Here is the crucial point: Polya’s ex-

planation does not distinguish between this sequence and other sequences,

and this is why it cannot be considered a telling answer to the why-question

“Why is it appropriate to introduce the ci sequence in the proof?”. Therefore,

if we accept Polya’s explanation as a good explanation, we have to conclude

that it does not provide a good answer to its motivating why-question. This
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seems to suggest that the why-question analysis lacks some facets of Polya’s

explanation. In particular, as we are going to see in the following lines, the

why-question approach does not account for the conceptual resources intro-

duced by Polya in his explanation.

Polya’s explanation cannot be considered a telling answer to the why

question “Why is it appropriate to introduce the ci sequence in the proof?”.

Consequently, the why-question approach does not account for this particular

explanation. Why? Sandborg’s diagnosis is that the difficulty for the why-

question approach comes from what implicitly a why-question presupposes,

namely that the way it regards its topic being fixed. In line with Belnap and

Steel’s dictum “to understand a question is to know what would count as an

answer to it” [Belnap et al., 1976, p. 35], this roughly means that we know

a priori what an acceptable answer to our why-question would be. There is

then no room for conceptual resources we introduce into the analysis of the

situation. On the other hand, our initial state of puzzlement may be due

to not even knowing how best to regard the topic. In fact, an explanation

can gain most of its virtue by showing us an effective way to understand the

subject-matter, rather than through any particular why-questions it hap-

pens to answer54. For example, in Polya’s case, the mathematician shows

the importance of the growth rate, and not the importance of that growth

rate rather than another. Thus, if we want to account for this situation in

terms of why-questions, the why-question“should allow an answer in terms of

growth rates to be judged explanatory by a questioner who couldn’t even talk

about growth rates until the explanation had been given” [Sandborg, 1998,

p. 621. My emphasis]. In so far as asking a why-question fixes a way of

looking at the explanandum and demands an explanation in those terms, the

why-question approach will not be able to account for a variety of mathemat-

ical explanations. More importantly, this point is relevant for our discussion

54This observation is connected to Sandborg’s quotation in point (α) about the impos-
sibility (for the questioner) of specifying a priori a relevance relation in cases where: we
discover new resources during the solving procedure and those resources are not manifest
at the outset.
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because the problem is not restricted to mathematical explanation within

mathematics but it is shared also by explanations of physical phenomena

analyzed through the lens of why-questions techniques. For instance, con-

sider Newton’s explanation for the motion of planets in terms of action at a

distance. His explanation clearly did not answer the question the Cartesians

had in mind, but it introduced a new way of looking at the topic “the planet

P moves around the sun following path x”. This has been possible through

the introduction of concepts not available before55. Therefore “it would have

been impossible to specify a Newtonian answer as an appropriate answer to

a question posed before the Principia; the pertinent concepts couldn’t yet

be given to indicate that kind of answer was appropriate” [Sandborg, 1998,

p. 622].

Sandborg proposes to correct the problems highlighted in (α), (β) and (γ)

by offering an alternative to the why-question approach, namely a picture of

explanation evaluation which takes into account conceptual resources not

previously available: “an explanation may be significant because it deploys

relevant conceptual resources not previously available” [Sandborg, 1998, p.

621]. Even if the idea of conceptual resources is left undeveloped in his study,

such approach to the problem of explanation would preserve contextual fac-

tors (what was not previously available depends upon the context), including

the aspects of the context which the why-question approach was not able to

capture (difficulty γ). Moreover, it would avoid the problems α (problem of

explanatory evaluation) and β (problem of recognition of explanations under

the form of proof) we have seen Van Fraassen’s model has when faced with

55It is very interesting to note that Van Fraassen points to the same example (Newton’s
explanation of phenomena in terms of gravitation) as to show that there are cases, in a
theory’s domain, where the request for explanation is rejected because at that stage, i.e.
during that particular period, that particular request is considered as intrinsically illegit-
timate. This was, in fact, the case of the paresis example (see section 2.3.1, and precisely
Van Fraassen’s treatment of the problem of the rejection of explanation requests). Accord-
ing to Van Fraassen, Newton did not provide an explanation of gravitational phenomena,
but only a description [Van Fraassen, 1980, p. 112]. Differently from Van Fraassen, Sand-
borg considers that Newton did provide an explanation, even if in a totally new form with
respect to the explanations which came before [Sandborg, 1998, p. 622].
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cases of mathematical explanations56.

Observe that up to now I have considered Van Fraassen’s among the WTA

approaches to explanation. However, Van Fraassen considers that there no

exists explanation simpliciter and he proposes a model in which the relevance

relation is open (it depends on the context we are in). Therefore his account

seems not to fit into the WTA conception of explanation presented in this

part of the dissertation, but it looks to be much more related with a pluralist

perspective on MEPP. Why then I have considered Van Fraassen’s account

among the WTA models? It is time to justify this choice, and Sandborg’s

criticism (especially remark γ) provides the right ‘context’ to do that.

According to Van Fraassen, explanations always come under the form of

answers to why-questions. In regarding explanations as coming under this

form, Van Fraassen does impose a general schema (or form) on explanation,

and proposes a single model. This idea does not fit within a pluralist view

on explanation, which considers that there are different kinds of explanation

and these explanations cannot be captured by a single account.

Of course, it might be noted that Van Fraassen leaves open his rele-

vance relation exactly because he wants his model to mirror this variety of

explanations, namely the different kinds of relevant answers which can be

given depending from the contexts. However, Sandborg’s criticism shows

that explanations do not always come under the form of an answer to a why

questions. In particular, the why-question schema cannot be applied when

we do not know a priori how best to regard the topic, and our explanation

is given in terms of procedures or considerations which were not known or

56According to Sandborg’s sketch, when a mathematical explanation “does not look at
the explanandum in a new way” (i.e. it does not deploy new conceptual resources), it could
not be considered explanatory. This would make possible to bypass the trivialization seen
in (α), concerning the insufficiency of a probabilistic criterion of explanatory evaluation
in mathematical explanations. As regards (β), this approach would have the advantage
to explain why we consider a proof of a result as an explanation of it: the explanatory
character of the proof would be not evaluated according to its capacity of providing new
propositional information, but to the fact that it invokes new conceptual resources not
previously available. Sandborg’s picture of explanation is not developed further in his
paper.
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taken into account at the outset (as Sandborg shows in Polya’s case)57. As

put forward by Matti Sintonen:

It also becomes obvious that not all explanations are answers to why-

questions. Depending on the type of inquiry at hand they could

be how-questions, how possible-questions, what-questions, or the like

[Sintonen, 1999, p. 134].

Therefore, by considering that every explanation in science comes under

the form of a why-question, Van Fraassen commits himself to a WTA view

on explanation. This is why I consider his model as a WTA approach.

Before coming back to Baker’s MEPP and PET, it seems to me impor-

tant to add a comment on Richardson’s and Sandborg’s remarks about the

possibility (or not) of dismissing an answer (for instance, the answer about

JFK’s death in terms of positions of the planets on that particular day) just

by looking at the particular context (for instance, modern science or the

astrological-club). To this comment I will add some considerations about the

applicability of the pragmatic account to mathematical explanations. This

is relevant to MEPP because has to do with the process of evaluation of a

mathematical answer to a why-question.

Recall Richardson’s defense of Van Fraassen: the relation of astral in-

fluence, i.e. a relation between propositions describing positions of planets

and propositions about personal fate, does not exist in the present context of

modern science, and then no astrological-answer is relevant and can be used

as telling answer to the why-question “Why did JFK die on 11/22/1963?”.

Let me comment on this.

In the context of modern science there is no relation of astral influence.

How can we say that? If we want to throw away astral influence as bad

science (and thus dismiss Kitcher and Salmon’s criticism), it seems that Van

57I will provide a similar example of such explanations, i.e. explanations which are not
given in terms of why-questions but which are regarded as such in the scientific practice,
during my analysis of a particular test-case, in chapter 7. This example will concern
MEPP, and not mathematical explanation within mathematics (as in Sandborg’s case).
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Fraassen and Richardson need a definition for what is “scientifically accept-

able”. A possible solution could be to consider the astral theory as ‘scientific’

if it is empirically adequate. But, as we have seen, Van Fraassen’s idea is

that empirical adequacy does not affect explanation:

So I conclude that (a) the assertion that theory T explains, or provides

an explanation for, fact E does not presuppose or imply that T is true

or even empirically adequate [Van Fraassen, 1980, p. 100]

Therefore, how can Richardson say that such a astral theory does not

belong to the present context of modern science without giving a criterion to

judge what is scientific and what is not? It seems that only something very

similar to an objective relevance relation (for instance, a relation expressed

as a law of that theory) should do the trick. This means that the problem

to have some objective (or not) constraint elsewhere comes out again.

Let’s make a step further by making a parallel between scientific explana-

tion and mathematical explanation. Even if we assume that astral influence is

not science (according to a criterion of ‘scientificity’ which Van Fraassen does

not offer), in the case of mathematical proof we cannot exclude a (formally

correct) proof as “bad maths”. Therefore no criteria for “bad proofs” (proofs

to be considered as not relevant to that context) are established for formally

correct proof. A possible criterion to evaluate the ‘goodness’ of a proof could

be given, precisely, by its explanatory power (or its aesthetic virtues, or

other virtues). But the explanatoriness is exactly what we are looking for.

Now, Richardson claims that the assertion ‘For any two true propositions,

A and B, A explains B’ is true only if, given any two propositions (A and

B), there is some context in which there is a why-question with B as topic

which A answers. Nevertheless, from the analysis of David Sandborg clearly

emerges that this context is hard to find in the case of mathematical expla-

nations in mathematics, and in particular in the case of explanations under

the form of proofs. What is more, let me note that while astrological circles

and scientific communities have different rules and utilize different theories,

the mathematical community uses a common instrument called mathematics,
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which is made by extremely interconnected domains that are very difficult to

‘cut’ into separate contexts. Thus the mere propositional-context alone (the

mathematical knowledge which is employed in the resolution of the proof),

which is considered by theories as Van Fraassen’s, is insufficient as to discrim-

inate an explanatory from a non-explanatory proof. Sandborg’s suggestion of

focusing on the role of “conceptual resources not previously available” points

exactly in this direction: we need to include an extra ingredient into our

model of explanation, at least if we want our model to mirror cases of mathe-

matical explanations in mathematics which occur under the form of proofs58.

Therefore it seems that, for the case of mathematical explanations in

mathematics, the “austerely beautiful landscape of our empiricist philosoph-

ical homeland” [Richardson, 1995, p. 126] is far from being reached. And we

have to choose between the Scylla of a new theoretical approach (as proposed

by Sandborg) and the Charybdis of an objective relation as a virtue of the-

ory that provides us explanatoriness [Kitcher et al., 1987, p. 330]. However,

the third way proposed by Van Fraassen is still open, and it might save the

pragmatic account in the case of mathematical explanations. What is the

price to pay? I will shortly discuss this third way below, in the context of

MEPP and our example of cicadas.

2.4 Is PET a good candidate for MEPP?

Let us now return to Baker’s test-case and the possibility for the prag-

matic account of covering MEPP. As we have seen, Van Fraassen’s third

presupposition (A bears relation R to 〈Pk, X〉) involves the relation R, which

is left unrestricted by the author. The criticisms presented in the previous

section suggest that this is the crucial aspect of Van Fraassen’s model. It is

therefore important to address this aspect.

In subsection 2.3.2 I have claimed that the third presupposition ‘A bears

58Recall that, while “proofs are often vehicles for mathematical explanation”
[Sandborg, 1998, p. 616], not all explanations come under the form of proofs, as Polya’s
example suggests.
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relation R to 〈Pk, X〉’ is problematic in our cicada-case of MEPP. However,

I have not provided a justification for that claim. Remember now that A

is the proposition ‘prime periods minimize intersections compared to non-

prime periods’ (the mathematical statement). We want to know how R can

be found (or how R is found) in this context.

Of course, in the case of cicadas we cannot assume that the reason A

bears a causal relation R to 〈Pk, X〉. Therefore, what kind of relation R does

a number theoretic theorem (A) bear to 〈Pk, X〉? It seems that, if we want

to extend the pragmatic account and save it for this particular case, we have

two possibilities concerning R:

1. to agree with Salmon and Kitcher, and try to find an objective relevance

relation.

2. to leave the relevance relation indefinite (without any constraint, ob-

jective or not), as Van Fraassen does, and justify this choice somehow

depending on the context we are considering.

Leaving apart the question whether Van Fraassen’s theory is committed

to realist or anti-realistic positions, if we choose the first solution we come

back to our starting point. To find an objective relevance relation R be-

tween a mathematical fact and a physical phenomenon might be regarded

exactly as the problem of what makes a mathematical description of that

phenomenon explanatory. This is the challenge of accounts like Steiner’s,

where Van Fraassen’s machinery is not needed. Steiner’s solution in terms

of “separability” of the mathematical part from the physical one and his def-

inition of characterizing property could be read as an attempt to define an

objective relevance relation, which does not require the why-questions ap-

proach59. The difficulty in characterizing the relevance relation in the case

59Let me clarify this point. Recall what we saw in the previous chapter. For Steiner, a
mathematical proof is explanatory if: it depends on a characterizing property mentioned
in the theorem (C1); it is possible to deform that proof “substituting the characterizing
property of a related entity”and getting“a related theorem”(C2). We have a MEPP when,
after the separation of the mathematical part from the physical part of the explanation
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of cicadas is well expressed by Baker when he affirms (in private communi-

cation): “If I were to try to say more about how the pragmatic model might

work here, I think I would analyze the relevance relation as some sort of

counterfactual. One problem, of course, is that many mathematical counter-

factuals are also counterpossibles, e.g. ‘If 17 were not prime then ...’. So one

would need an account of how to make sense of these, so that they do not all

come out as vacuously true. Or perhaps it is better to focus on the ’mixed’

mathematical-physical claims and evaluate the counterfactuals with respect

to these”.

Alternatively, if we choose the second strategy in the case of mathemat-

ical answers, we can consider those answers as relevant depending on the

interests of the questioner. The interests of the questioner would fix a cri-

terion of relevance, thus providing a relevance relation. However, in order

the questioner can fix a criterion of relevance, he needs alternatives answers.

In the context of mathematical explanation within mathematics and MEPP,

to have alternative answers amounts to have more than one mathematical

theory of the same mathematical result or physical phenomenon. This is the

possible alternative and third way, between Sandborg’s Scylla and Kitcher

and Salmon’s Charybdis. The idea has been expressed by Van Fraassen to me

in a private communication60: “ [...] it might still be possible to point first of

(we isolate the bridge-principles), we obtain an explanatory proof in the sense of C1 and
C2. I have called CMEPP such a criterion. Therefore, a possible way of fix Van Fraassen’s
relevance relation R, according to Steiner’s criterion of explanatoriness, might be to model
CMEPP on R. The relevance relation Rst would be the relation that the mathematical
explanans A bears to 〈Pk, X〉. For instance, the relation that the mathematical statement
‘prime periods minimize intersections compared to non-prime periods’ bears to the couple
〈Pk, X〉 in the case of cicadas. Of course, the relation Rst would make the answer ‘Because
A’ favour the topic with respect to the other alternatives, thus picking out only the topic
within the constrast class. We would obtain a super-telling answer to our why-question! Is
this circular in any sense (because we are already assuming an account of MEPP)? Would
Van Fraassen agree on this reading? Moreover, let me observe that this relation would be
objective because based on the notion of characterizing property. I will come back to the
possibility to ‘read’ Steiner’s account of MEPP in terms of a relevance relation in chapter
4.

60Note that I call this approach the ‘third way’ just to emphasize that in this case
the pragmatic approach is specifically used in the context of mathematical answers to
why-questions. The idea expressed by Van Fraassen in the private communication is the
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all to the interests of the questioner which might determine to some extent

the relevance of the answer. For example, some problems are in principle

treated equally well in set theory and in category theory, but the questioner

might not be wanting the first rather than the second. And while “more

likely” than its alternatives seems inapplicable in the mathematical case if

“likely” is taken in an objective sense, an answer to a mathematical question

might eliminate more or fewer of the relevant alternatives (while not offering

a complete proof)”.

Nevertheless, to adopt an account of explanation with this pragmatic

function seems largely insufficient for our purposes. By accepting this strat-

egy we would be forced to reduce our analysis only to cases where mathe-

matical or physical results are explained via different mathematical theories,

a possibility which is not so common. If we concentrate on the case of phys-

ical phenomena treated mathematically, it is not common to have different

mathematical theories which describe the same natural phenomenon. For

instance, this is not the case of the cicada example, where there is (as least

to our knowledge) only one mathematical answer. Beside this, let me note

that there is also a problem with what we should consider as a mathematical

theory (can call this problem the “boundary” problem). Even if we agree

that set theory and category theory are considered distinct theories by a

questioner, there are cases of MEPP where two or more distinct mathemat-

ical procedures can lead to the desired result, but those procedures do not

belong to different theories; even worse, those procedures might be closely

interconnected because they use shared mathematical tools. As an example,

take the case of Euler’s theorem we saw during the discussion of Steiner’s

account of MEPP. We can have prove the theorem, and then the existence

of the instantaneous axis of rotation, via a geometric procedure (this is what

Euler did in his [Euler, 1750], or what is made in [Whittaker, 1904, p. 2]

and [Targ, 1987, p. 221-222]) or via an abstract algebraic procedure (consid-

ering matrices, vector space, etc..). Although different, these mathematical

same idea which stands behind the pragmatic approach. However, Van Fraassen does not
consider the case of mathematical answers to why-questions in his [Van Fraassen, 1980].

127



procedures do not belong to different mathematical theories. Modern lin-

ear algebra embeds geometrical concepts (for instance, the distance between

points) as a consequence of an historical process, and then the procedures

cannot be considered as independent one from the other.

Therefore, at least when we cannot find different theories which describe

the same physical phenomenon, it seems that this third pragmatic way to ex-

planation must be rejected. When we have at disposition only one mathemat-

ical theory (or description) of the physical phenomenon, or one mathematical

theory of the mathematical result, the questioner has only one (mathemati-

cal) answer at disposition, and the theory of why-question is of not interest

for an analysis of the explanatoriness of the argument. This is the case, for

instance, of the cicada example. Thus there seems to be little chance to save

PET for mathematical explanations in mathematics and in science by con-

sidering the interests of the questioner as a criterion of relevance.

Finally, also if we assume PET as way to eliminate relevant alternatives,

a further problem emerges: the problem of evaluation. This is precisely the

trivialization (point α) raised by David Sandborg in his discussion of Van

Fraassen’s theory as applied to the case of mathematical explanations in

mathematics. It takes us back to the problem of finding explanatory factors

in order to evaluate the mathematical component on a part K(Q) of our

knowledge K. If we consider mathematical explanations within mathemat-

ics, and in particular the case of proofs, no probabilistic tools are suitable

to evaluate our explanations because all proofs would be explanatory with

maximal score. If we consider MEPP, we do not have a common framework

which links mathematics to our background knowledge (or to a part K(Q)

of it), thus how do we evaluate A in light of it? As an example, consider

that we are able to find a different proof of the number theorem which Baker

refers to in his paper (or, more luckily, a different theorem which offers a

useful connection between primeness and biological laws). Does the PET tell

us (as Steiner’s account does) if the new proof (or theorem or mathematical

procedure) plays a more or less explanatory role than the previous one? How
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other answers can favour the topic better or screen it off? How the interests

of the questioner might be taken into account in the process of evaluation of

the telling character of such an answer? Again, it seems that the problem of

evaluation strictly depends on the lack in an evaluative component coming

from R, i.e. a relevance relation as a sufficient criterion in order to evaluate

the two differents proofs (or theorems) in light of our knowledge or part of

this knowledge.

2.5 Conclusions

In order to consider MEPP in Van Fraassen’s model we can choose be-

tween two general strategies. If we agree with Paolo Mancosu that a the-

ory of mathematical explanations of scientific phenomena is not completely

independent of a theory mathematical explanation of mathematical facts

[Mancosu, 2008b], we can consider the pragmatic account from this perspec-

tive. Nevertheless, as emerged from my analysis, Van Fraassen’s theory is not

suitable to deal with mathematical explanation within mathematics, thus the

pragmatic model should be rejected also as a model of MEPP. The alternative

strategy consists in taking into account an extension of the pragmatic theory

(I called PET this extension), assume some sort of methodological continuity

between the mathematical world and the physical one and focus directly on

MEPP. However, as we have seen in the previous section, also this extension

is problematic because it could be made only via two approaches: define an

objective relevance relation, but this is exactly the problem of defining what

counts as an objective criterion for explanatoriness; or assume Van Fraassen’s

theory as a theory through which evaluate the relevance that different an-

swers have for the questioner. The latter case, as we have seen, is insufficient

for our purposes. The cicada case shows well how these alternative answers

are often impossible to find in the context of MEPP. Moreover, in both cases

we have the problem of the evaluation of the mathematical argument, which

makes Van Fraassen’s model of explanation problematic to extend to cases
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of MEPP. It seems that the PET model is not able to tell us why a mathe-

matical procedure is regarded as providing explanatoriness (with respect to

another mathematical procedure).

To conclude, it seems that, to save Van Fraassen’s account in the case of

mathematical explanations (within mathematics or for physical phenomena),

we need some extra criterion (on the relevance relation and on the evaluation

step). This extra criterion is not offered by Van Fraassen’s theory, and it is

not clear how to offer it in the context of MEPP. Furthermore, my previ-

ous considerations block (or, at least, make less plausible) Baker’s positive

idea about the possibility of using the pragmatic account in the cicada-case.

Finally, at least in the context of MEPP, I have to agree with Kitcher and

Salmon in concluding that Van Fraassen’s theory of explanation seems to be

a very useful theory of the pragmatics of explanation, but not a pragmatic

theory of explanation [Kitcher et al., 1987, p. 315].
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Chapter 3

Unification as a way to

explanation: a uniform, global

approach

The aim of scientific explanation throughout the ages has been unification, i.e.,

the comprehending of a maximum of facts and regularities in terms of a minimum

of theoretical concepts and assumptions. The remarkables success achieved, es-

pecially in the theories of physics, chemistry, and to some extent recent biology,

has encouraged pursuit of a unitary system of explanatory premises. Whether

this aim is attainable depends, of course, both on the nature of the world and on

the ingenuity of the scientists. I think this is what Einstein had in mind in his

famous sayings: “God is subtle but He is not malicious”; “The only thing that is

incomprehensible, is that the world is comprehensible”

Herbert Feigl, The “Orthodox” View of Theories, p. 12.

The concept of unity in physics has a long history. As Klein and Lachieze-

Rey have well illustrated in their book The Quest for Unity: The Adventure

of Physics [Klein et al., 1999], this search for unification begins with Greek

conceptions of unity and arrives until our day. The effort to reconcile op-

posites (fire and water, being and not being, finite and infinite, abstract

and concrete, and so on) and subsume regularities under a same framework,

is as ancient as philosophy. Passing through differents ways of thinking,
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contexts and authors such as Thales, Heraclitus, Nicholas of Cusa, Kepler,

Descartes, the concept of unity has showed its force through the history of

human thought. With respect to physics, it is well-known how important has

been, and continues to be, the role of mathematics in the process of inclusion

of separate theories and phenomena into one single framework. This is the

case, for example, of Maxwell’s famous unification of electromagnetism and

optics through the Lagrangian formalism1. Now, although it is largely ac-

cepted that “appearances of homogeneity in physics are due to a generalized

use of mathematics” [Klein et al., 1999, p. 103], we are left with the follow-

ing problem: how does mathematics play this unifying role? And, for what

interests us, does this unification have something to do with explanation?

If mathematics is to serve as a unifying tool, how should we characterize a

theory of explanation in terms of unification?2.

In this chapter I will present the unification model for explanation, firstly

proposed by Michael Friedman in his [Friedman, 1974] and successively modi-

fied and extended by Philip Kitcher in his [Kitcher, 1981] and [Kitcher, 1989].

I will focus on Kitcher’s version of unification, and this choice is motivated by

the fact that Kitcher’s model can be regarded as a refined version of Fried-

man’s (I will substantiate this claim during my discussion). However, the

reader might be surprised at my choice. The original construction of Kitcher’s

model was addressed to general scientific explanation, and in particular to

explanation under the form of laws. Why then do I discuss it in the context

of MEPP? I can adduce three general motivations for this choice. First of all,

observe that the fact that such a theoretical account could potentially cover

mathematical explanations of physical phenomena as well as mathematical

explanations within mathematics is now a shared opinion by a number of em-

1In his [Maxwell, 1865], Maxwell deduced analytical mechanics, electromagnetism, and
wave mechanics from a variational principle. See [Morrison, 1992] and [Morrison, 2000],
especially chapter 3 of the latter, for a detailed history of the development of Maxwell’s
electrodynamics.

2As we are going to see, the unification theory of explanation proposed by Philip Kitcher
will be more general and it will consider “patterns”, and not mathematics, as a unifying
tool in science.
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inent philosophers (for instance, see [Hafner et al., 2005], [Mancosu, 2008b]

and [Tappenden, 2005]). As pointed out by Jamie Tappenden:

However, mindful of the fact that some explanations in physics and

mathematics do seem to be governed by the same principles, I’ll count

it as an advantage of an account that it supports a uniform treatment

of some mathematical and some physical explanations. A promising

candidate to support a uniform treatment of some pure mathematical

cases and some non-mathematical ones is the treatment of explanation

as unification as proposed in the seventies by Michael Friedman and

Philip Kitcher. [Tappenden, 2005, p. 158-159]

Moreover, as we are going to see, also Kitcher considers that his unifica-

tion model is well suited to account for cases of mathematical explanations.

Therefore, since this model has been regarded as a promising candidate as

to cover MEPP, it is important to include it in this study. Second, let me

observe that, despite the great interest in the linkage scientific explanation-

MEPP, an extensive discussion of this model in the context of MEPP has

not been offered and work is just beginning [Mancosu, 2008c]. This is why

in the final part of the dissertation I will come back to Kitcher’s model and

I will discuss it in the context of MEPP. In chapter 7 I will assess Kitcher’s

model on a case of MEPP coming from the scientific practice, while in the

final chapter I will discuss Kitcher’s example of Newtonian unification in

the context of my perspective on MEPP and of a generalization of my ap-

proach. Moreover, I will provide a sketch of how my perspective on MEPP

can be potentially extended to scientific explanation, and Kitcher’s model

will be very important to state this point. Consequently, the space devoted

to Kitcher’s unification and the detailed presentation of such an account are

worth for the discussion I will deal with in the last part. Finally, there is a

third reason (less substantial and more ‘pragmatic’) which has led me to in-

clude this model in my analysis. Kitcher’s model represents a good example

of WTA model of explanation, and therefore I will use it to constrast WTA

with pluralism. Moreover, its exhaustive structure has permitted me to pick
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out from that model some specific aspects, and I have used these aspects to

fix some general characterizations concerning the WTA models (I will offer

such characterizations in chapter 4).

The chapter is structured as follows. In the first section, I will present

Friedman’s original idea concerning explanation as unification. Second, I

will skip to Kitcher’s more elaborated formulation of explanatory unifica-

tion. This will require some technicalities, which will be introduced gradually

in my presentation. Next I will report some criticisms against the unifica-

tion approach to explanation and, more particularly, against the fact that

there exist some relationships between explanation and unification. Finally,

I will dedicate the conclusive section to the ‘methodological holism’ on which

Kitcher’s model is based, and I will stress the relevance of this chapter for

the topic and the general strategy of this dissertation.

3.1 Friedman’s unification

Friedman’s discussion in his [Friedman, 1974] starts with two important

observations: for the most part, what is explained in science is a general regu-

larity or pattern of behaviour (explanations of particular events are relatively

rare)3; second, the explanation of a phenomenon often involves another phe-

nomenon by a relation known as reduction. For example, we explain the fact

that water turns to steam when heated by relating this phenomenon with the

behaviour of the molecules of water4. The initial phenomenon to be explained

(the behaviour of water) is then reducted to an explaining phenomenon (the

behaviour of molecules). This situation is very common in scientific explana-

tion. Thus, concerning the main desiderata a theory of scientific explanation

should have, Friedman points out that

[...] the central problem for the theory of scientific explanation comes

3We remind here that the D-N model had been drawn to take into account particular
events. I will return to this point during the presentation of Friedman’s model.

4When water is heated the energy of the molecules increases. If their energy is sufficient
to overcome intermolecolar forces, the molecules fly away and escape in the atmosphere.
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down to this: what is the relation between phenomena in virtue of

which one phenomenon can constitute an explanation of another, and

what is it about this relation that gives us understanding of the ex-

plained phenomenon? [Friedman, 1974, p. 6]

The previous quotation underlines two crucial points of Friedman’s dis-

cussion: the reductionistic character a theory of explanation should have

(and we will see how Friedman’s model tries to capture this feature) and the

focus on the linkage explanation-understanding such a theory should offer.

Referring to the latter, Friedman’s idea is that the notion of explanation and

that of understanding should not be studied separately. We cannot start by

definining what “scientific understanding” is and then requiring that a theory

of explanation captures this sense of understanding. As Friedman observes:

“We can find out what scientific understanding consists in only by finding

out what scientific explanation is and vice versa” [Friedman, 1974, p. 6].

In order to define a new account doing better than the preexistent ac-

counts of scientific explanation, in his paper Friedman follows a three-step

method: (A) analyse the problems which the notion of understanding has in

traditional accounts of scientific explanation; (B) extract from the analysis

the properties a good notion of understanding should have; (C) sketch a new

account of scientific explanation in which these good properties are included,

and which offers the linkage explanation-understanding we are searching for.

Here I will consider steps (A) and (B), and then I will concentrate on his

account of explanation.

(A) According to Friedman, if we focus on the notion of understanding,

classical approaches to explanation could be divided in two categories: those

like Hempel’s, which have a precise definition of the nature of the explana-

tion relation but nothing to say about the linkage between this relation and

the notion of understanding; and those like Toulmin’s, Scriven’s or Hanson’s

which offer a clear definition of what understanding is but they do not have

a story of how this understanding is produced5.

5These approaches to explanation are given, respectively, in [Hempel et al., 1948],
[Toulmin, 1963], [Scriven, 1962] and [Hanson, 1963].
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If we consider the D-N model, Hempel argued against a notion of scientific

understanding because of its non-logical, pragmatic aspect in explanation.

Here, with the term “pragmatic”, Hempel means psycological, i.e. having

to do with individual beliefs or attitudes of persons. However, as Friedman

observes, the term pragmatic can also mean subjective as opposed to objec-

tive [Friedman, 1974, p. 8]. In the latter case, the term pragmatic must be

regarded as a relative notion (a notion varying from individual to individ-

ual), while in the first sense it might be not. Hence, while agreeing with

Hempel that a good theory of explanation should offer an objective notion

of explanation, Friedman maintains that the notion of understanding can be

pragmatic in the first sense (and then psychological) but also objective (and

then constant for a group of persons, for instance a community sharing a

system of beliefs):

Similarly, although the notion of understanding, like knowledge and

belief but unlike truth, just is a psychological notion, I don’t see why

there can’t be an objective or rational sense of ‘scientific understand-

ing’, a sense on which what is scientifically comprehensible is constant

for a relatively large class of people [Friedman, 1974, p. 8]

This is why, for Friedman, we have to take into account such a notion of

understanding (i.e. a notion depending on psychological factors but having

an objective value for a group of individuals) in building our theories of sci-

entific explanation.

Despite rejecting understanding as a relevant feature of his account, Hempel

suggests that in the D-N model the understanding is achieved by rational

expectation. In other words, the passage from the ontic to the epistemic

is made by rational expectation. However, as Friedman observes, “to have

grounds for rationally expecting a phenomenon is not the same thing as to

understand it” [Friedman, 1974, p. 8]. A typical situation of this is provided

by the so called ‘indicator laws’, as the law which connects the indication

on a barometer and the arrival of a storm. Those laws offer predictions,

i.e. rational expectations, on the basis of initial conditions and laws, but
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do not offer the understanding of why the phenomena does occur (we look

at the barometer and we know there will be a storm, but we do not know

why this occurs). Those counterexamples concern explanation of particular

events, which are concerned by the D-N model. Friedman observes that the

situation is even worse if the phenomenon to explain is a general regularity

or a pattern of behaviour, since they do not occur at a definite time and then

there is no question of expecting them. Thus we have only rational grounds

for believing the phenomenon does occur, which is part of the understanding

of the phenomenon but it is not a complete and sufficient story for such an

understanding.

The “familiarity” approach advanced by P. D. Bridgman in his book The

Logic of Modern Physics [Bridgman, 1927] maintains that we have under-

standing of the world through scientific explanation when we reduce unfa-

miliar phenomena to familiar ones6. Nevertheless, as stressed by Friedman,

this account is not acceptable because most of the explanations offered by

modern physics are given in terms of phenomena stranger and less familiar

than the original phenomena they explain. The same kind of criticism has

been expressed by Hempel himself:

The free fall of a physical body may well be said to be a more familiar

phenomenon than the law of gravitation, by means of which it can be

explained; and surely the basic ideas of the theory of relativity will

appear to many to be far less familiar than the phenomena for which

the theory accounts. [Hempel et al., 1948, p. 145]

A view similar to that expressed by the familiarity account is that of

Michael Scriven in his “Explanation, Prediction and Laws” [Scriven, 1962].

Scriven suggests that explanation has a logical function. This logical func-

tion consists in relating some phenomena (not understood) with the set of

phenomena understood by a person at a particular time, a “realm of under-

standing” [Scriven, 1962, p. 202]. In this account, the phenomenon being

6The term “familiarity view” has been conied by Friedman [Friedman, 1974].
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explained must be related to a phenomenon that is already understood7.

Nevertheless, according to Friedman, Scriven’s account is not immune to the

problem the familiarity view on explanation has: in science we very often

explain via a phenomenon which is less understood, in the relevant sense,

than the phenomenon to explain.

Let me add a comment on Friedman’s observation. I think that Fried-

man’s criticism should be reinforced by the following observation: Scriven

does not offer any precise way of discriminating between different degrees

of understanding of a phenomenon, then his account suffers from the (even

more urgent!) problem of giving such a comparison. For instance, in what

sense is gravitation better understood than the fall of bodies? The problem

is to define a condition for which a phenomenon belongs to the realm of un-

derstanding. What is involved is, again, the notion of understanding we are

considering. Observe that Scriven makes reference to a “proper context” in

which the explanation is given, but does not fix any constraint on what he

calls “levels of understanding”:

Hence the notion of the proper context for giving or requesting an ex-

planation, which presupposes the existence of a certain level of knowl-

edge and understanding on the part of the audience or inquirer, auto-

matically entails the possibility of a complete explanation being given.

And it indicates exactly what can be meant by the phrase “the (com-

plete) explanation”. For levels of understanding and interest define

areas of lack of understanding and interest, and the required explana-

tion is the one which relates to these areas and not to those other areas

related to the subject of the explanation but perfectly well understood

or of no interest (these would be explanations which could be correct

and adequate but inappropriate) [Scriven, 1962, p. 202]

Even if we accept that explanation has the logical function of relating

a phenomenon (not understood) with a set of phenomena which are under-

7Note the difference with the familiarity account: the familiarity partisans maintain
that the phenomenon being explained is related to a familiar phenomenon, whereas for
Scriven the phenomenon being explained must be related to a phenomenon which is already
understood.
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stood (realm of understanding), Scriven does not offer any characterization

of the elements of such a set (for instance, by introducing a comparison of

“levels of understanding”). Consequently, his account should be considered

as incomplete.

Finally, these two positions (the familiarity view and Scriven’s) assign

to the explanans a necessary special epistemological feature. According to

Friedman, this special epistemological status is not necessary, and these views

suffer from lack of generality because they do not account for all cases of ex-

planation in science.

Since what interests us are MEPP, observe here that in order to ex-

tend such accounts to the case of mathematical explanations in physics we

would need a criterion to consider the explanans as more (or less) “famil-

iar”/“understood” than the phenomenon which is explained. It is true that,

in mathematical explanations of physical phenomena, a phenomenon is often

explained by recurring to a mathematical fact which is considered as more

familiar than the phenomenon itself. This is the case, for instance, of the

explanation of the life-cycle of cicadas through the specific property of prime

numbers, in Alan Baker’s example seen in the previous chapter8. However,

there are also cases where a less familiar or less understood“mathematical ar-

gument” is used to explain a more familiar or more understood phenomenon.

For instance, the delta Dirac function was justified mathematically late after

his introduction, in distribution theory. Nevertheless its use in mathematical

physics came before its mathematical justification9.

The third approach to explanation considered is that called by Friedman

the “intellectual fashion view”. In this group we find the positions endorsed

by Stephen Toulmin [Toulmin, 1963] and, in a very different flavour, that of

N. R. Hanson [Hanson, 1963]. In common with the familiarity account and

Scriven’s account, this view assigns to the explanantia special epistemolog-

8Naturally, the notion of “familiar” is not defined here. However, it is reasonable to
say that the particular property of primes -known- is more familiar than the life-cycle of
cicadas -unknown- (at least until the first is used in the explanation of the second).

9I will come back to the notion of understanding (in relation with MEPP) in the
conclusive part of this work.
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ical status, but contrary to the previous theories this special status is not

static and varies with history. The first position, which is represented by

Toulmin, states that during a particular historical period and within a par-

ticular historical tradition there exist phenomena which need no explanation

(they are “ideals of intelligibility” or, as Toulmin calls them, “ideals of natu-

ral orders”). The business of explanation is to relate those self-explanatory

phenomena to other unexplained phenomena (unexplained at that particular

time). The second position, endorsed by Hanson, is different in the fact that

the choice of an ideal of intelligibility is due to its qualities, for example its

predictive power. According to Hanson scientific theories pass through three

stages, and they finally become standards of intelligibility (“glass boxes”) in

the third stage, when they reach the ability to connect previously discon-

nected areas of research via predictions. In those stages of glass boxes the

phenomena described by the theory are taken as paradigms of naturalness

and comprehensibility.

The intellectual fashion approach offers then a notion of “scientific un-

derstanding” which varies through history, because ideals of intelligibility do.

In spite of having a lot of historical support, for what counts as explanatory

during a specific historical period is regarded as non-explanatory during an-

other10, Friedman observes that this view does not offer a common, objective

and rational sense of explanation in which scientific theories explain; it does

not offer a sense of explanation in science which is constant throughout the

history of science.

(B) After his analysis of the problems that the notion of understanding

has in some traditional accounts of scientific explanation, Friedman moves to

step two of his project by listing the properties that a theory of explanation

should have:

1. It should connect explanation and understanding: it should tell us

what kind of understanding scientific explanations provide and how

they provide it.

10See [Mischel, 1966] for various examples.
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2. It should be sufficiently general: when tested on (most of) the theories

that we consider to be explanatory it should mirror the explanatoriness

of these theories.

3. It should be objective: it should capture the objective and rational

sense in which scientific theories explain (if there is any!), i.e. it should

not consider an explanation as depending on non-rational factors like

“ideals of natural order” or “changing tastes of scientists and historical

periods”.

As we have seen, according to Friedman’s analysis none of the views on

explanation seen before satisfy both those conditions. This is why Friedman

proposes an account of explanation which, according to him, satisfies these

three desiderata.

3.1.1 Friedman’s model

The idea that a scientific theory explains an empirical law by showing

how this is an aspect of more comprehensive regularities, i.e. the idea that

such a theory provides a “systematically unified account of many empirical

laws”, was suggested by Hempel himself [Hempel, 1966, p. 83]. However, the

idea of unification in the sense of reduction of the number of independent

phenomena appears for the first time in William Kneale’s Probability and

Induction [Kneale, 1949, p. 91]. This is the starting point of Friedman’s

construction of his model of explanation, whose ‘unificatory’ flavour emerges

from the following passage:

From the fact that all bodies obey the laws of mechanics it follows that

the planets behave as they do, falling bodies behave as they do, and

gases behave as they do. Once again, we have reduced a multiplicity

of unexplained, independent phenomena to one. I claim that this is

the crucial property of scientific theories we are looking for; this is the

essence of scientific explanation science increases our understanding

of the world by reducing the total number of independent phenomena
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that we have to accept as ultimate or given. A world with fewer

independent phenomena is, other things equal, more comprehensible

than one with more. [Friedman, 1974, p. 15]

But what does it mean “to reduce the total number of acceptable in-

dependent phenomena”? Friedman assumes that phenomena, i.e. general

uniformities or patterns of beheviour, are representable by lawlike sentences.

Thus, instead of speaking of independent phenomena, we can speak of logi-

cally independent lawlike sentences. The notion of ‘acceptance’ is defined by

supposing that at any given time there is a set K of accepted lawlike sen-

tences (i.e. phenomena), where accepted means “accepted by the scientific

community”. This set K is deductively closed in the sense that if S is a sen-

tence and K ` S, then S is a member of the set K. So defined, K contains all

lawlike consequences of members of K. The reduction is made on the total

number of phenomena (lawlike sentences) we have to accept, thus the next

step is to define what do we mean by “reduction of independent phenomena”.

In other words, we want to know when a given lawlike sentence Si permits a

reduction of the number of independent sentences of K. Nevertheless, here

we are confronted with a famous problem (call this the problem of conjunc-

tion), which was acknowledged by Hempel and Oppenheim in footnote 28 of

their 1948 paper on explanation. Here is the famous footnote 28:

The precise rational reconstruction of explanation as applied to gen-

eral regularities presents peculiar problems for which we can offer no

solution.The core of the difficulty can be indicated briefly by refer-

ence to an example: Kepler’s laws, K, may be conjoined with Boyle’s

law, B, to a stronger law K.B; but derivation of K from the latter

would not be considered as an explanation of the regularities stated

in Kepler’s laws; rather it would be viewed as representing, in effect,

a pointless “explanation” of Kepler’s laws by themselves. The deriva-

tion of Kepler’s laws from Newton’s laws of motion and of gravitation,

on the other hand, would be recognized as a genuine explanation in

terms of more comprehensive regularities, or so-called higher-level laws

[Hempel et al., 1948, p. 159]
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Thus the conjunction does not offer any interesting sense of reduction (of

different laws to one), since the conjunction (one law expressed as the con-

junction of n-laws) is equivalent to the set of independent laws (n-conjuncts).

In order to surmount this problem, and have a useful sense of reduction,

Friedman introduces the notion of ‘independent acceptability’. Intuitively,

the notion of independent acceptability captures the idea that if we have two

sentences, S1 and S2, of which one (say, S1) is acceptable independently (AI)

of the other, we have grounds for accepting S1 while the same grounds are

not sufficient for accepting S2. This would provide a possible way to deal

with the problem of conjunction: although every sentence is equivalent to

a set of n independent sentences, it is not the case that every sentence is

equivalent to a set of n independently acceptable sentences.

Assuming that sufficient grounds for accepting a sentence S are also suffi-

cient for accepting any consequence of S, if AI(X, Y ) means “X is acceptable

independently of Y” we have:

(1) If S ` Q then ¬AI(S,Q) (where ¬AI(S,Q) means that grounds for

accepting S are also grounds for accepting Q)

(2) If AI(S, P ) and Q ` P , then AI(S,Q).

Concerning ¬AI(S,Q), observe that, since S could be a stronger state-

ment than Q, grounds for accepting Q may be insufficient grounds for ac-

cepting S.

We can reformulate (1) by using the law of contraposition:

If AI(S,Q) then ¬(S ` Q)

While the rationale for (1) is easy to see, we can reformulate (2) in the

following more readable form:

(2’) Given Q ` P , if ¬AI(S,Q) then ¬AI(S, P )

If Q entails P , by condition (1) we have that grounds for accepting Q

are also sufficient for accepting P (i.e. they are not AI). Thus we conclude
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that grounds for accepting S are also sufficient grounds for accepting P , i.e.

¬AI(S, P ).

The next notion to define is that of“reduction”(of independent sentences).

In order to obtain this definition Friedman introduces some terminology.

A partition of a sentence S is a set of sentences Γ such that

• Γ⇐⇒ S (logical equivalence)

• AI(S ′, S) for every S ′ ∈ Γ.

Note that the members of the partition do not have to be mutually ex-

clusive.

A K-atomic sentence is a sentence S which has no partition (in the set K

of accepted lawlike sentences). This means that there is no set of sentences

{S1, S2} in K such that S1 and S2 are AI of S and S1∧S2 is logically equiva-

lent to S. For example, if S1 is Boyle-Charles law, S2 is Graham’s law of dif-

fusion and S3 is Galileo’s law of free fall, then the conjunction S = S1∧S2∧S3

is not K-atomic, because there exists a partition Γ: AI(S1, S), AI(S2, S),

AI(S3, S) and Γ = {S1, S2, S3} is logically equivalent to S11. The scheme in

Figure 3.1 illustrates the example.

Given the notion of K-atomic sentence, let the K-partition of a set of

sentences ∆ be the set Γ∗ of K-atomic sentences which is logically equivalent

to ∆. In general, for a set ∆ there may exist more than one K-partition.

Then the K-cardinality of the set ∆ is the number of the members of the

smallest K-partition of ∆, i. e. the greatest lower bound of the cardinality

of the K-partitions of ∆ (Friedman assumes here the existence of the K-

partition for every set of sentences ∆):

K-card(∆) = inf {card(Γ∗): Γ∗ a K-partition of ∆}
11Boyle-Charles law and Graham’s law of diffusion are both derived from the kinetic

theory of gases. For instance, in deriving the Boyle-Charles law we make use of Newton’s
laws together with the assumption that gases are composed of molecules interacting only
in collisions. Furthermore, the kinetic theory permits to integrate the behavior of gases
with that of falling bodies near the earth. The behaviors of gases and falling bodies are
both derived by using the laws of mechanics.
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AI(S1,S ) 

S

S1 S3

and Γ={S1, S2, S3}⇔ S

AI(S3,S ) AI(S2,S ) 

S2

Figure 3.1: The conjunction S = S1 ∧ S2 ∧ S3 is not K-atomic (S admits a
partition Γ).

Note that the number of K-atomic sentences contained in any K-partition

Γ∗ of ∆ is greater or, at least, equal to the number of elements of the

set ∆. Thus, if ∆ = BC ∧ Gr ∧ Gal ∧ Kep, the K-card(∆) is at least

4. The diagram in Figure 3.2 illustrates this situation in the case we have

more than one K-partition of a set of n sentences ∆ = {α1, ..., αn}, and

K-card(∆)=inf{card(Γ∗i )} = p.

We thus come to define what“a sentence reduces a set of sentences”stands

for. A sentence S reduces the set of sentences ∆ if the K-cardinality of the

union of {S} with ∆ is smaller than the K-cardinality of ∆. More formally:

[reduction] S reduces ∆ iff K-card(∆ ∪ {S}) < K-card(∆).

What does this exactly mean? In our example of the conjunction of four

independent laws (Boyle-Charles’ law, Graham’s law, Galileo’s and Kepler’s

laws) we have the following situation: we want to know if S = BC ∧ Gr ∧
Gal ∧ Kep reduces the set of its conjuncts Γ = {BC,Gr,Gal,Kep}. By

applying the definition of reduction we have that S does not reduce Γ (and
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Γ*1= {β1, ..., βp}  

Γ*2= {γ1, ..., γq}  

Γ*3= {ω1, ..., ωr}  

Δ= {α1, ..., αn}

...

Γ*1⇔Δ ; 

β1, ..., βp K-atomics  

Γ*2⇔Δ ; 

γ1, ..., γq K-atomics  

Γ*3⇔Δ ; 

ω1, ..., ωr K-atomics  

p,q,r ≥ n;
inf{p,q,r, ...} = p

Figure 3.2: More than one K-partition of a set of n sentences ∆ =
{α1, ..., αn}.

thus we have a solution to the problem of conjunction for the particular case):

• K-card(Γ∪{S}) =K-card({BC,Gr,Gal,Kep,BC∧Gr∧Gal∧Kep}) =

6, because {BC,Gr,Gal,Kep1, Kep2, Kep3} is the smallestK-partition

of the union12.

• K-card(Γ)= 6.

• Thus K-card(Γ∪{S}) 6<K-card(Γ) and we have that S does not reduce

the set of its conjuncts Γ, as desired.

As a further step, Friedman introduces the idea of the set of independently

acceptable consequences of a sentence S, namely conk(S): a sentence S1 ∈
conk(S) iff S ` S1 and AI(S1, S). The basic idea which he wants to capture

12Observe that Kep = Kep1 ∧ Kep2 ∧ Kep3, but this conjunction is not K-atomic
because there exists a partition Γ of it: AI(Kep1,Kep), AI(Kep2,Kep), AI(Kep3,Kep)
and Γ = {Kep1,Kep2,Kep3} is logically equivalent to Kep = Kep1 ∧Kep2 ∧Kep3.
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by introducing the set conk(S) is that a sentence S explains when it is able

to reduce its set of independently acceptable consequences.

Friedman’s definition of “explanation between laws” is given in terms of

the previous terminology:

How can we define explanation in terms of these ideas? If S is a candi-

date for explaining some S′ in K, we want to know whether S permits

a reduction in the number of independent sentences. I think that the

relevant set we want S to reduce is the set of independently acceptable

consequences of S (conk(S)). For instance, Newton’s laws are a good

candidate for explaining Boyle’s law, say, because Newton’s laws re-

duce the set of their independently acceptable consequences – the set

containing Boyle’s law, Graham’s law, etc. On the other hand, the

conjunction of Boyle’s law and Graham’s law is not a good candidate,

since it does not reduce the set of its independently acceptable conse-

quences. This suggests the following definition of explanation between

laws:

(D1) S1 explains S2 iff S2 ∈ conk(S1) and S1 reduces conk(S1)

The previous definition of explanation (D1), however, is soon weakened

by Friedman because it rules out the case of the conjunction of a sentence

which explains with an irrelevant law:

Actually this definition seems to me to be too strong; for if S1 explains

S2 and S3 is some independently acceptable law, then S1∧S3 will not

explain S2 – since S1 ∧ S3 will not reduce conk(S1 ∧ S3). This seems

undesirable – why should the conjunction of a completely irrelevant

law to a good explanation destroy its explanatory power? So I will

weaken (D1) to

(D2) S1 explains S2 iff there exists a partition Γ of S1 and an Si ∈ Γ

such that S2 ∈ conk(Si) and Si reduces conk(Si)

Thus, if S1 explains S2, then so does S1∧S3; for {S1, S3} is a partition

of S1 ∧ S3, and S1 reduces conk(S1) by hypothesis. [Friedman, 1974,

p. 17-18]
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Let’s consider an example. The set {BC,Gr,Gal,Kep} be the set of

independently acceptable consequences of Newton’s laws N1,N2,N3. Does

the sentence N = N1 ∧N2 ∧N3 reduce ∆ = {BC,Gr,Gal,Kep}?

{N} = {N1 ∧N2 ∧N3}

∆ = {BC,Gr,Gal,Kep}

thus

K-card(∆ ∪ {N})=K-card({BC,Gr,Gal,Kep,N1 ∧N2 ∧N3})

The K-cardinality of the union set ∆ ∪ {N} is the number of the mem-

bers of its smallest K-partition, which is {N1, N2, N3} (the set {N1, N2, N3}
is logically equivalent to {BC,Gr,Gal,Kep,N1 ∧ N2 ∧ N3} and N1, N2, N3

are K-atomics). K-card(∆∪{N})=3 < K-card(∆)=6 and thus the sentence

N containing the conjunction of Newton’s laws reduces the set ∆ of their

independently acceptable consequences (as desired). As we have seen from a

previous example, the conjunction of those laws S = BC ∧Gr ∧Gal ∧Kep
does not reduce the set of its conjuncts Γ = {BC,Gr,Gal,Kep} and then

S it is not a good candidate for the explanation of one of the conjuncts

BC,Gr,Gal,Kep, while Newton’s laws (N) are. Hence, for example, Kepler

laws Kep ∈ conk(N) and N reduces conk(N), thus Kep is explained by New-

ton’s laws N (as stated by D1)13.

However, as Friedman points out, definition (D1) used in the previous

example seems to be too strong because in the case of the conjunction of a

good explanation (for example N explains Kep) with an independently ac-

ceptable law (say, a law of quantum mechanics QML –Quantum Mechanical

Law–), definition (D1) tells us that the conjunction N ∧QML does not ex-

plain Kep. This could be seen by observing that, according to (D1), we have

that N ∧QML explains Kep iff

• Kep ∈ conk(N ∧QML)

13The sentence Kep ∈ conk(N) because N ` Kep and AI(Kep,N).
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• (N ∧QML) reduces conk(N ∧QML)

While the first condition poses no problem14, the second is problematic

because K-card(conk(N ∧QML) ∪ {N∧QML}) will be greater or equal than

K-card(conk(N ∧QML)). Thus, the sentence N ∧ QML does not reduce

the set of its independently acceptable consequences conk(N ∧QML) and

therefore, by (D1), the conjunction N ∧QML does not explain Kepler laws

Kep. More generally, S1∧S2 does not reduce conk(S1∧S2) if AI(S1, S2) and

AI(S2, S1).

In order to solve this problem, the new definition of explanation proposed

by Friedman states that:

(D2) S1 explains S2 iff there exists a partition Z of S1 and an Si ∈ Z
such that S2 ∈ conk(Si) and Si reduces conk(Si)

Let’s now examine the same example of Newton’s laws N and QML

according to (D2). (N ∧QML) explains Kep iff

• there exists a partition Z of (N ∧QML)

• there exists an Si ∈ Z such that Kep ∈ conk(Si) and Si reduces conk(Si)

The partition Z of (N ∧ QML) exists and is Z = {N,QML}, where

N = N1∧N2∧N3
15. If we take N in this set Z, we see that Kep ∈ conk(N)

andN reduces, as we saw in the previous example, the set of its independently

acceptable consequences conk(N). Thus the conjunction (N∧QML) explains

Kep, and the new definition (D2) permits that, if a lawlike sentence S1

explains S2, then so does the conjunction S1 ∧ S3, as desired. To put it

roughly, Friedman solves the difficulty with (D1) by permitting an higher

step in the projection of laws and integrating (D1) in the lower step. This is

showed in Figure 3.3.

14The sentence Kep ∈ conk(N ∧QML) because (N ∧QML) ` Kep and AI(Kep,N ∧
QML).

15The partition exists because: the set Z is logically equivalent to the sentence (N ∧
QML); furthermore, AI(N,N ∧QML) and AI(QML,N ∧QML).
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Z = {N, QML}

 (N ∧ QML) (D2)

Kep ∈ conk(N)

K-card ( conk(N) ∪ {N}) = K-card ({BL, Gr, Kep, Gal, N})

(D1)

Smalles K-partition of the set {BL, Gr, Kep, Gal, N} = {N1, N2, N3};
card (N1,N2,N3) = 3 then K-card (conk(N) ∪ {N}) = 3 < K-card (conk(N)) 

(N ∧ QML) explains Kep

Figure 3.3: The conjunction (N ∧QML) explains Kep according to (D2).

According to Friedman, his definition (D2) permits to solve the difficulty

with the D-N model, where the conjuction of two independent laws always

entails each of the conjuncts while it does not necessarily explains them. In

addition, he considers that his approach provides an account of when we in-

crease our understanding, and thus a linkage between an objective definition

of explanation and scientific understanding.

By concentrating on what he calls the “local aspects of explanation” (the

explanandum, the explanans, the deductive relation between the two), tradi-

tional theories of scientific explanation have given a special epistemological

status to the explanans. Nevertheless, according to Friedman, this adoption

of non-rational factors (familiarity, etc..) should be abandoned, as is clear

from the previous discussion. Friedman’s idea is that in order to connect ex-
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planation and understanding, and avoid the problem of giving a special epis-

temological status to the explanans, the focus should be put on the “global

aspects of explanation”and on the“global nature of scientific understanding”.

In Friedman’s view, thus, we increase our (global) understanding when

we can simplify our total picture of nature by a reduction in the number of

independent phenomena we accept as ultimate (where the notion of reduction

is definited as above). Therefore the sense in which we replace a phenomenon

with another, in order to increase our understanding, does not amount to a

simple replacement of a puzzling phenomenon with another one (recall that

Friedman’s assuption is that phenomena are always representable by law-

like sentences). The laws of Newtonian mechanics allow us to derive the fact

that planets obey Kepler’s laws, the fact that terrestrial bodies obey Galileo’s

laws of free fall, the behaviour of gases, etc. If we agree with Friedman, we

should be able to trace the path of the scientific understanding enterprise by

focusing on scientific laws, at a global level.

[...] Scientific understanding is a global affair. We don’t simply replace

one phenomenon with another. We replace one phenomenon with a

more comprehensive phenomenon, and thereby effect a reduction in

the total number of accepted phenomena. We thus genuinely increase

our understanding of the world. [Friedman, 1974, p. 19]

Thus, while trying to find an answer to the general question “What is the

nature of the understanding scientific explanations are supposes to convey?”

[Salmon, 1989, p. 127], Friedman addressed the different question“How do we

increase our understanding?”. As observed by Salmon, Friedman’s answer to

this question in terms of unification can also be read in terms of information

theory [Salmon, 1989, p. 131], for what is important for explanation is the

way in which our descriptive knowledge is organized and not some particular

kind of explanatory knowledge (as, for instance, causal knowledge).
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3.1.2 Kitcher’s criticism of Friedman’s model

Friedman’s model was put under discussion by Kitcher in his [Kitcher, 1976].

According to Kitcher, Friedman’s definition of explanation (D1) admits only

K-atomic sentences as explananda, while (D2) rules out K-atomic sentences

as explananda. From these observations there follow further objections,

which are summarized by two types of counterexamples. Before seeing these

counterexamples, let me illustrate Kitcher’s arguments for the two claims:

Cl1 According to (D1) only K-atomic sentences can explain

Cl2 According to (D2) no K-atomic sentences can explain

The latter claim Cl2 comes directly from Friedman’s definition (D2): “S1

explains S2 iff there exists a partition Z of S1 and ...”. If S is K-atomic,

it has no partition (from the definition of K-atomic sentence)16 and then it

does not explain.

Kitcher’s claim Cl1 amounts to saying that: if S is not k-atomic, then it

does not reduce the set of its independently acceptable consequences conk(S).

He reaches this conclusion by the following argument: we assume that S is

not k-atomic; then there exists a partition Γ such that for each sentence

Ai ∈ Γ it holds AI(Ai, S) and Γ is logically equivalent to S; but then, since

for each A ∈ Γ it holds S ` A, it follows that Γ ⊆ conk(S); if S ` C we have

that Γ ` C (since S and Γ are logically equivalent) and thus that conk(S) ` C
(since Γ ⊆ conk(S)); conversely, if now we consider conk(S) ` C, then only

a finite subset of conk(S) is used in the deduction; if B is the conjunction

of the sentences in this finite subset, then B ` C and S ` B; hence S ` C;

we have showed that S is logically equivalent to its set of independently ac-

ceptable consequence conk(S); now, if S is logically equivalent to conk(S),

then conk(S) is logically equivalent to conk(S) ∪ {S}; thus any K-partition

of conk(S) is also a K-partition of conk(S) ∪ {S}, and conversely. There-

fore K-card(conk(S)) is equal to K-card(conk(S) ∪ {S}), and consequently

16If A is K-atomic, Γ = {A} is logically equivalent to A but A is not independently
acceptable from A.
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(from Friedman’s definition of reduction) S does not reduce the set of its

independently acceptable consequences K-card(conk(S)). Finally, only K-

atomic sentences can explain according to (D1).

Kitcher shows that the problem with (D1) is that, by allowing the fact

that only K-atomic sentences can explain, Friedman’s account rules out triv-

ial conjunctions (and then solves the problem of conjunction) but it also rules

out a number of bona fide scientific explanations. Kinds of genuine scientific

explanations which are ruled ou by (D1) are illustrated by Kitcher by propos-

ing two sorts of counterexamples. Furthermore, Kitcher points out that these

counterexamples, to which Friedman’s theory is vulnerable, are not solved

by (D2). The first type of counterexamples (CE1) occurs when

we have independently acceptable laws which belong to the same the-

ory and which can be put together in genuine explanations. The ex-

plananda that result are not K-atomic and hence fail to meet the

necessary condition derived from Friedman’s theory [Kitcher, 1976, p.

209]

For instance, the law of adiabatic expansion of an ideal gas could be de-

rived from the conjunction of two laws (Boyle-Charles law and the first law of

thermodynamics) acceptable on the basis of quite independent tests. There-

fore the conjunction is not K-atomic (as required by D1), but the derivation

of the law of adiabatic expansion from this conjunction seems to be a gen-

uine explanation. The second type of counterexample (CE2) arises when

we use laws coming from different theories in order to explain a complex

phenomenon. In this case, as Kitcher observes, the theories are often inde-

pendently acceptable and the laws drawn from them are also independently

acceptable. For example, the explanation of why lighting flashes are followed

by thunderclaps utilizes laws of electricity, thermodynamics and acoustics,

which are independently acceptable. Or

a complete explanation of why human eyes are sensitive to a particular

range of light frequencies (an explanation that would involve indepen-
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dently acceptable laws drawn from evolutionary biology, geophysics,

and optics) [Ibid., p. 210]

Does Friedman’s definition (D2) avoid the previous counterexamples?

Kitcher’s opinion is that it does not. On the basis of claims Cl1 and Cl2,

Kitcher reinforces Friedman’s definition (D2) by using the right-hand side of

(D1):

I suspect that Friedman’s intentions would be better captured by an

equivalence whose right-hand side consisted of the disjunction of the

right-hand sides of (D1) and (D2) [Ibid., p. 211]

More explicitly, the new definition D3 is the following:

(D3) S1 explains S2 iff [(S2 ∈ conk(S1) and S1 reduces conk(S1)) ∨ (there

exists a partition Γ of S1 and an Si ∈ Γ such that S2 ∈ conk(Si) and Si

reduces conk(Si))]

Observe that, since the right-hand side of D3 contains the right-hand

sides of (D1) and (D2) in a disjunction, to provide a counterexample for

(D3) amounts to providing a counterexample for (D1) and also for (D2).

We have already seen Kicther’s counterexamples (CE1) and (CE2) for (D1).

Kitcher’s next step is to show that (D3) –and then (D2)– does not avoid

these counterexamples. For instance, he focuses on counterexample (CE1),

i.e. the explanation of the law of adiabatic expansion for an ideal gas.

As we have seen above, (D1) does not capture the explanatory character

of the conjunction of the two laws (Boyle-Charles law and the first law of

thermodynamics – acceptable on the basis of quite independent tests) from

which the law of adiabatic expansion for an ideal gas can be derived. What

about (D2)? Let T be the first law of thermodynamics, B the Boyle-Charles

law, and A the law of adiabatic expansion for an ideal gas. According to

(D2), A can be derived from T ∧ B (as a genuine explanation) only if the

following two conditions hold:
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• There exists a partition Γ of T ∧B

• There is an Si ∈ Γ such that A ∈ conk(Si) and Si reduces conk(Si)

By what we said above (Cl1 and Cl2), the sentence Si must be K-atomic.

The problem is then to find Γ and Si meeting this condition.

Assume that there were such a Γ and Si. Consider the set {(Si∨T ), (Si∨
B)}, which is equivalent to the sentence Si ∨ (T ∧B). Since Γ is a partition

of T ∧ B, we have that (T ∧ B) ` Si. But then the set {(Si ∨ T ), (Si ∨ B)}
is equivalent to Si. Since Si is K-atomic, it has no partition. Therefore

one of (Si ∨ T ) and (Si ∨ B) is not acceptable independently of Si. As a

consequence, if we want to find a partition Γ and a sentence Si that will

allow the explanation of the law of adiabatic expansion for an ideal gas to

stand as a genuine explanation, we have to find a Si such that either T or

B is not acceptable independently of Si. However, when we consider our

grounds for accepting B and our grounds for accepting T , there is no law L

that meets the two conditions:

• that all our sufficient grounds for accepting B (or all our sufficient

grounds for accepting T ) be sufficient grounds for accepting L

• L ` A

Therefore it seems that Γ and Si are not available and that his (D2) does

not save his theory from the types of counterexamples raised by Kitcher.

However, as Kitcher himself observes, these counterexamples are not avoided

by Friedman’s definitions exactly because they do not correspond to Fried-

man’s sense of explanation, i.e. they do not work by reducing the number of

independent phenomena:

Moreover, it would be contrary to the spirit of Friedman’s whole enter-

prise if (D2) (or the disjunctive condition I have suggested as a more

exact representation of his views) did allow that my counterexamples

are genuine explanations because of the existence of some unobvious
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way of partitioning the explanantia. For Friedman’s central insight is

that we attain understanding when we see how to reduce the number

of independent phenomena. The explanations cited above give genuine

understanding in their own right; we do not obtain this understand-

ing by supposing that some partition Γ containing an appropriate Si
lurks behind them and does the real work of reducing the number of

independent phenomena. [Kitcher, 1976, p. 211-212]

Finally, we come to what Kitcher considers the moral of his criticism.

While he agrees with Friedman that a theory of explanation should connect

explanation and unification, his point is that Friedman was wrong in consid-

ering laws as the key aspect of unification. This is why Friedman’s model is

not able to account for some cases of explanations which seem to be genuine.

Finally, I think that it is not hard to see why Friedman’s theory goes

wrong. Although he rightly insists on the connection between expla-

nation and unification, Friedman is incorrect in counting phenomena

according to the number of independent laws. [...] What is much

more striking than the relation between these numbers is the fact that

Newton’s laws of motion are used again and again and that they are

always supplemented by laws of the same types, to wit, laws speci-

fying force distributions, mass distributions, initial velocity distribu-

tions, etc. Hence the unification achieved by Newtonian theory seems

to consist not in the replacement of a large number of independent

laws by a smaller number, but in the repeated use of a small num-

ber of types of law which relate a large class of apparently diverse

phenomena to a few fundamental magnitudes and properties. Each

explanation embodies a similar pattern: from the laws governing the

fundamental magnitudes and properties together with laws that spec-

ify those magnitudes and properties for a class of systems, we derive

the laws that apply to systems of that class. [Kitcher, 1976, p. 212]

Thus, for Kitcher, not simply laws but something else should be central

to explanatory unification: patterns.
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3.2 Kitcher’s unification

In this section I am going to present Kitcher’s unification model, which

has been presented by Kitcher’s in two different papers: [Kitcher, 1981] and

[Kitcher, 1989]17. In addition to those two papers, an important key in or-

der to understand Kitcher’s model is his book The Nature of Mathematical

Knowledge [Kitcher, 1984], which specifically concerns the rational growth of

mathematical knowledge. By focusing specifically on mathematical practice,

this book represented a decisive step in the integration of history with philos-

ophy of mathematics, against that form of “mathematical apriorism” which

denied any active role of history in the study of mathematical knowledge18.

As Friedman, Kitcher does not make distinction between mathematical

explanations and scientific explanations. Furthermore, as Steiner, Kitcher

considers mathematics and science on par from a methodological point of

view:

[...] given my own views on the nature of mathematics, mathematical

knowledge is similar to other parts of scientific knowledge, and there

is no basis for a methodological division between mathematics and

natural sciences [Kitcher, 1989, p. 423]

In addition to this methodological continuity, Kitcher explicitly claims

that his model is able to cover mathematical explanations as well:

[...] even in areas of investigation where causal concepts do not apply

– such as mathematics – we can make sense of the view that there are

patterns of derivation that can be applied again and again to generate

a variety of conclusions. [...] The fact that the unification approach

provides an account of explanation, and explanatory symmetries, in

mathematics stands to its credit. [Kitcher, 1989, p. 437]

Let’s now see his model in detail.

17Now systematized in his [Kitcher, 1993].
18For Kitcher’s objections against the “apriorist epistemology of mathematics” see his

[Kitcher, 1980], and the recapitulation he gives in his [Kitcher, 1988].
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3.2.1 Kitcher’s model

Kitcher’s starting points are Friedman’s 1974 paper and the idea that be-

hind the D-N model there was an “unofficial model” which considered expla-

nation as unification and which seemed to be more promising than the official

one19. However, differently from Hempel, Kitcher regards explanation as an

“activity”. More precisely, following Peter Achinstein [Achinstein, 1983, p.

84-85], he regards an explanation as an ordered pair consisting of a propo-

sition p and an act type (Mr X’s act of) explaining q: (p, explaining q).

For Achinstein, what makes the ordered pair an explanation is the appro-

priate relation the sentence expressing p bears with a particular argument20.

Kitcher’s idea is that there exist acts of explanation which draw on scien-

tific arguments. Hence the basic problem is to determine the features such

scientific arguments should have in order to serve as the basis for acts of

explanation, i.e. the conditions which must be met if a scientific argument

whose conclusion is S is used in answering the question ‘Why is it the case

that S?’.

Thus, although adopting the notion of argument to characterize that of

explanation, Kitcher abandons the Hempelian (ontological) thesis that ex-

19I have already mentioned Hempel’s passage in subsection 3.1.1. Here is the entire
passage: “What scientific explanation, especially theoretical explanation, aims at is not
[an] intuitive and highly subjective kind of understanding, but an objective kind of insight
that is achieved by a systematic unification, by exhibiting the phenomena as manifestations
o common, underlying structures and processes that conform to specific, testable, basic
principles” [Hempel, 1966, p. 83].

20More formally, for Achinstein E is an explanation of q if and only if (i) Q is a content-
question (in direct form; the indirect form of Q is q), (ii) E is an ordered pair whose
first member is a complete content-giving proposition (p) with respect to Q and whose
second member is the act-type ‘explaining q’. Question Q is a content-question if and only
if there is a complete content-giving proposition with respect to Q. A complete content-
giving proposition with respect to Q is a proposition that entails all of Q’s presuppositions.
For instance, if Q is ‘Why did Peter get a stomach ache?’, the propositions ‘The reason that
Peter got a stomach ache is that he ate spoiled meat’ and ‘Bill got a stomach ache because
he ate spoiled meat’ are complete content-giving propositions, while the proposition ‘Bill
ate spoiled meat’ is not. Furthermore, Achinstein shows how an explanation acceptable
within the D-N model can be viewed in terms of ordered pairs: E is an explanation of q
if and only if (i) Q is a question of the form ‘Why is it the case that p?’, (ii) E is a D-N
argument, whose conclusion is p, which contains lawlike sentences and satisfies Hempel
conditions (i.e. logical and empirical conditions of adequacy) [Achinstein, 1983, p. 93].
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planations are arguments. Furthermore, his position is very different from

Van Fraassen’s, for Kitcher claims that there are context-independent fea-

tures of arguments which make them explanatory, and scientific theories can

be investigated under the light of their capacity to provide us with with such

arguments21. He regards Newtonian theory and Darwin’s evolutionay theory

as examples of such theories.

Nevertheless, if we want to consider particular arguments with some con-

text independent feature, we are confronted with two problems: where do

those arguments come from? What are their particular features? Kitcher

answers the first question in a way very similar Friedman answered the ques-

tion about the existence of a set of lawlike sentences:

The set of arguments which science supplies for adaptation in acts

of explanation will change with our changing beliefs. Therefore the

appropriate analysandum is the notion of the store of arguments rel-

ative to a set of accepted sentences. Suppose that, at the point in the

history of inquiry which interests us, the set of accepted sentences is

K. (I shall assume, for simplicity’s sake, that K is consistent. Should

our beliefs be inconsistent then it is more appropriate to regard K as

some tidied version of our beliefs.) The general problem I have set is

that of specifying E(K), the explanatory store over K, which is the set

of arguments acceptable as the basis for acts of explanation by those

whose beliefs are exactly the members of K. (For the purposes of

this paper I shall assume that, for each K there is exactly one E(K).)

[Kitcher, 1981, p. 512]

While the previous quotation states that for each consistent and deduc-

tively closed set K of beliefs (endorsed by a scientific community at a par-

ticular time) there is exactly one set E(K) of arguments acceptable as the

basis for acts of explaining (i.e. the explanatory store over K), we do not

21As we have seen in chapter 2, for Van Fraassen there are no context-independent
features (beyond those of simplicity and empirical adequacy) which distinguish arguments
for use in explanations.
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still have an answer to our second question about the features of the argu-

ments which characterize this set. A very general and indirect answer to this

question is that E(K) is the set of arguments which best unifies K, or, in

Kitcher technical language (that we will see below), that E(K) is the best

systematization of K.

As I have already observed, the notion of pattern, and precisely that of

pattern of arguments, will be central to the definition of Kitcher’s unification.

In particular, for him, the unifying power of a theory (for instance Newton’s

theory) consists in the fact that, by using the same pattern of derivation again

and again, the theory shows us how to derive a large number of sentences

which we accept. This is the way in which science advances our understand-

ing of nature [Kitcher, 1989, p. 432]. The linkage between E(K) and the

notion of pattern emerges from the following passage:

So the criterion of unification I shall try to articulate will be based on

the idea that E(K) is a set of derivations that makes the best tradeoff

between minimizing the number of patterns of derivation employed

and maximizing the number of conclusions generated. [Kitcher, 1989,

p. 432]

Thus, by considering arguments as derivations, Kitcher considers his pro-

posal different from that of Hempel, for the latter looked at arguments as

premise-conclusion pairs. In Kitcher’s discussion an argument is a derivation,

i.e. “a sequence of statements whose status (as a premise or as following

from a previous members in accordance with some specified rule) is clearly

specified” [Kitcher, 1989, p. 431]. For a derivation to count as an acceptable

explanation, it must belong to the explanatory store over K. In order to clar-

ify the previous notions, let me introduce the formal structure of Kitcher’s

model.

We have already introduced the basic notion of set of accepted sentences

K. A given set of beliefs K may have different ways of deriving some of

its sentences from others, and each of these ways -consisting in a set of

derivations- is a systematization for K. Thus a systematization Σ of K is
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a set of arguments which derives some members of K from other members

of K. The explanatory store over K, E(K), is the best systematization of

K, i.e. the systematization which provides the highest degree of unification.

Here Kitcher makes the idealization that E(K) is unique for every K. He

also requires that all the arguments in E(K) be acceptable relative to K.

To say that a set of derivation is acceptable relative to K is to say that

each step in each derivation in the set of derivations is deductively valid and

each premise of each derivation belongs to K. Thus, according to Kitcher,

in finding systematizations of K we restrict our attention to sets of argu-

ments (or derivations) which are acceptable relative to K. But now we are

left with the following question: what are the criteria which permit to say

that one systematization is better than another (and that E(K) is the best

systematization?).

The evaluation of a systematization Σ is made by using three different

notions:

• argument pattern

• generating set for Σ

• conclusion set for Σ

The concept of pattern discussed here by Kitcher, i.e. that argument

pattern offered by theories which can be used to derive a large number of

accepted sentences, is not the same as that familiar from formal logic (say,

a purely logical pattern). However, due to the particular way in which the

non-logical vocabulary (the vocabulary made by non-logical terms as “force”,

“mass”, etc) occurs in the instantiation of a pattern by an argument, Kitcher

observes that logic (and logicians) helps us to isolate and study the notion

of argument pattern. A schematic sentence is an expression obtained by re-

placing some or all of the non-logical expressions occurring in a sentence with

dummy letters, while a set of filling instructions tells us how to replace the

dummy letters in a schematic sentence (the “direction” for replacing dummy
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letters). A schematic argument is a sequence of schematic sentences, and a

classification for it is a set of sentences which describe the inferential char-

acteristics of the schematic argument and the role each schematic sentence

has in it.

Finally, a general argument pattern 〈s, f, c〉 is a triple consisting of a

schematic argument s, a set f of filling instructions and a classification c

for s. Kitcher’s favorite example of theories which offer unification in his

sense are Newtonian’s theory and Darwin’s evolutionary theory. Concerning

the latter, Kitcher observes that the strategy in Darwin’s On the origin of

species consists precisely in showing that “certain kinds of modifications of

beliefs make possible an increase in unification of a large number of biological

phenomena” [Kitcher, 1989, p. 491]22. Here I will use the Newtonian case to

give a concrete idea of the notion of argument pattern23.

The following schematic sentences (1)-(5) form a schematic argument sN :

1. The force on α is β

2. The acceleration of α is γ

3. Force = mass · acceleration

4. (Mass of α)·(γ) = β

5. δ = θ

The set of filling instructions fN contains the directions for replacing the

dummy letters α, β, γ, δ, θ in every schematic sentence. The members of

fN are: “all occurrences of α are to be replaced by an expression referring

to the body under investigation”; “occurrences of β are to be replaced by an

algebraic expression referring to a function of the variable coordinates and

of time”; “γ is to be replaced by an expression which gives the acceleration

of the body as a function of its coordinates and their time-derivatives”; “δ is

22For a discussion of Darwin’s example see [Kitcher, 1981], [Kitcher, 1985a] and
[Kitcher, 1989].

23For an example of argument pattern in the case of mathematics see
[Hafner et al., 2008, p. 213-214]. I will come back to this in the last section.
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to be replaced by an expression referring to the variable coordinates of the

body, and θ is to be replaced by an explicit function of time”. The sentences

contained in the classification set cN for the schematic argument sN give us

the inferential informations about the schematic argument: “(1)-(3) have the

status of premises”; “(4) is obtained from (1)-(3) by substituting identicals”;

“(5) follows from (4) using algebraic manipulations and the techniques of the

calculus”. Thus we have that a particular derivation in Newtonian mechan-

ics, i.e. a sequence of sentences and formulas which accord Newton’s laws,

instantiates the general argument pattern 〈sN , fN , cN〉 just in case: (i) the

derivation has the same number of terms as the schematic argument sN , (ii)

each sentence or formula in the derivation can be obtained from the corre-

sponding schematic sentence in accordance with the filling instructions fN ,

(iii) the terms of the derivation have the properties assigned by the classifi-

cation cN to members of the schematic argument sN .

As an illustration, consider the following example: a projectile P of mass

mp is fired horizontally from a tower of height y0. Take the top of the tower as

the origin of an xy Cartesian coordinate system (the projectile starts its flight

parallel to the x axis, i.e. parallel to the ground), and make the idealization

that there is no air-resistance. The initial speed of the projectile is v0. Of

course, also this condition on the speed is an idealized one: we assume that

when the projectile is fired, at t = 0, it has velocity v0; however, at time t = 0

the projectile is at rest and then it is subject to an instantaneous acceleration

in some small interval of time t+ ε. The horizontal and vertical components

of the velocity vector V0 are, respectively, ẋ = vx0 = v0 cosα and ẏ = vy0 =

v0 sinα, where α is the angle formed by the velocity vector and the x-axis.

Velocity v0 also corresponds to the value of the initial horizontal component

of the velocity (ẋ = vx0 = v0 cosα = v0, with α = 0), which in absence of

air-resistance remains constant throughout the motion. On the other hand,

the initial vertical component of the velocity is 0 (ẏ = vy0 = v0 sinα = 0,

with α = 0), and it increases in magnitude during the motion (at a costant

rate g, as we are going to see in a moment). The only force the projectile is
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subject to is the gravitational force FG, which acts downward.

The motion of the projectile in the plane xy is described by the vector

equation:

mp
d2r

dt2
= −mpgĵ (3.1)

or, in component form,

mp
d2x

dt2
= 0 and mp

d2y

dt2
= −mpg (3.2)

Using the initial conditions given above and the equation of the motion,

we can now consider the first and second time integrals for the two compo-

nents (horizontal and vertical):

Horizontal Vertical

ẋ = vx0 = constant ẏ = vy0 − gt = −gt (3.3)

x = vx0t y = −1

2
gt2 (3.4)

Finally, the two parametric equations x = vx0t and y = −1
2
gt2 could

be written as a single vector equation (an expression in which the variable

coordinates of the body are espressed in function of time)24:

r = V0t+
1

2
gt2 (3.5)

Let’s now see how the previous derivation in Newtonian mechanics in-

stantiates the general Newtonian argument pattern 〈sN , fN , cN〉. The set of

filling instructions fN permits to substitute the dummy letters α, β, γ, δ,

θ in every schematic sentence: α is replaced by ‘projectile’; β by ‘−mg’;

γ by ‘d
2r
dt2

’; δ by ‘r(x, y)’ and θ by ‘V0t + 1
2
gt2’. Therefore we have, for the

particular case of the projectile seen above, the following schematic argument:

24Note the sign plus in the equation. The vector g is directed downward.
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1* The force on the projectile is −mg

2* The acceleration of the projectile is
d2r

dt2

3* Force = mass · acceleration

4* −mg = mp ·
d2r

dt2

5* r(x, y) = V0t+
1

2
gt2

The classification set cN for the schematic argument sN gives us the infer-

ential informations about the schematic argument. It tells us that: “(1*)-(3*)

have the status of premises”; “(4*) is obtained from (1*)-(3*) by substituting

identicals”; “(5*) is deduced from (4*) using algebraic manipulations and the

techniques of the calculus –integration above”. Finally, (i) the derivation has

the same number of terms as the schematic argument sN (observe that veloc-

ity can be seen as the first integral of acceleration, while the coordinates of

the body as the second integral of acceleration); (ii) each sentence or formula

in the derivation can be obtained from the corresponding schematic sentence

in accordance with the filling instructions fN ; (iii) the terms of the deriva-

tion have the properties assigned by the classification cN to members of the

schematic argument sN .

By emphasizing the differences with a purely logical formulation, Kitcher

stresses the fact that in his schema mathematical assumptions do not occur

as terms of the schematic argument. This could be seen very easily from

the Newtonian example, where, for example, β must be replaced with an

algebraic expression. The focus here is not on the importance of the partic-

ular algebraic expression used, but on the importance of having a pattern of

derivation of this type. The attention must be turned on the general theo-

retical framework rather than on some particular feature of the argument or

of the phenomenon under study, as it was the case for Steiner’s account.

Whereas logicians are concerned to display all the schematic premises

which are employed and to specify exactly which rules of inference

are used, our example allows for the use of premises (mathematical
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assumptions) which do not occur as terms of the schematic argument

and it does not give a complete description of the way in which the

route from (4) to (5) is to go. Moreover, our pattern does not replace

all nonlogical expressions by dummy letters. Because some nonlogi-

cal expressions remain, the pattern imposes special demands on ar-

guments which instantiate it. In a different way, restrictions are set

by the instructions for replacing dummy letters. [Kitcher, 1981, p.

517-518]

The explanatory activity of scientists results from a compromise in de-

maning two kinds of similarity for arguments: similarity in the terms of logical

structure and similarity in terms of the non-logical vocabulary they employ

at corresponding places. Kitcher’s idea is that arguments similar in either of

these ways share a common pattern, hence he tries to capture those desider-

ata by introducing the notion of stringency of a pattern. Without offering a

detailed analysis of this notion, he proposes that the stringency of a pattern

is subject to two different constraints: 1) the conditions on the logical struc-

ture, imposed by the classification (strictness in the characterization of the

inferential principles); 2) the conditions on the substitution of dummy let-

ters, jointly imposed by the presence of non-logical expression in the pattern

(nature of the schematic sentences) and by the filling instructions (strictness

in the instantiation conditions). Consider now our Newtonian example: al-

though not having the same logical structure, arguments instantiating the

Newtonian pattern share some similarities in the logical structure (imposed

by the classification cN), while they make use of non-logical vocabulary at

same places.

A second notion we need in order to test a systematization is the notion of

generating set for a set of derivations Σ. Within each systematization there

are derivations which instantiate different argument patterns. A generating

set for a given systematization Σ is a set of argument patterns Π such that

every acceptable derivation in Σ instantiates an argument pattern in Π. A

generating set will be said to be complete with respect to K if and only if
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every derivation which is acceptable relative to K and which instantiates a

pattern in Π also belongs to Σ25.

Now, as we have seen before, E(K) is that set of derivations which makes

the best tradeoff between minimizing the number of patterns of derivation

employed and maximizing the number of conclusions generated. Kitcher

suggests the following steps for the determination of E(K):

(1) Choose between the different systematizations of K only those system-

atizations (set of arguments) which are acceptable relative to K, i.e. the

systematizations for which each step in each derivation is deductively

valid and each premise of each derivation belongs to K.

(2) Consider, for each systematization, the various generating sets Π which

are complete with respect to K.

(3) For each (acceptable) systematization select among the collection of

generating sets Π that set with the best unifying power. This should be

done according to the criterion of minimizing the number of patterns

of derivation employed (criterion of paucity of patterns) and that of

maximizing the stringency of a pattern. Call this set the basis B for

that systematization. A generating set which contains few patterns

scores better than a generating set which contains a bigger number of

patterns.

(4) The explanatory store over K is that systematization whose basis does

the best in terms of unifying power: E(K) is the best systematization

of K.

While in step (3) the criterion of minimizing the number of patters of

derivation permits us to choose a basis for each systematization, in order to

25To put it in a different way, Π is said to be complete if and only if there is no acceptable
derivation in K which instantiates a pattern from Π and is not included in the system-
atization generated by Π (incomplete generating sets should be forbidden since they use
patterns selectively by not recognizing all possible acceptable instantiations of a pattern).
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Σ
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Σ
3

...

Π11 Π12 Π13 ... Π21 Π22 ...

B1 B2

...

Systematizations of K

(complete) Generating sets

Basis for the relative systematization

(consistent) Set of accepted sentences

Π11= {〈s, f, c〉1,〈s, f, c〉2, ...} = set of argument patterns such that each 
argument in Σ

1 
is an instantiation of some pattern in Π11

(acceptable) set of arguments which 
derives some members of K from 
other members of K

generating set Π1j with the best 
unifying power 

Figure 3.4: Kitcher’s unification scheme.

rank the basis (and then the systematization, for each basis refer to one sys-

tematization) in step (4) we need something more. Kitcher’s intuitive idea is

that we have unifying power for a set of argument patterns Π “by generating

a large number of accepted sentences as the conclusions of acceptable argu-

ments which instantiate a few, stringent patterns” [Kitcher, 1981, p. 520].

Thus the criterion of evaluation must say something about the number of

conclusions generated by a set of argument patterns. We introduce here the

third key-notion, i.e. that of conclusion set for Σ: the conclusion set C(Σ)

of a set of arguments Σ is the set of sentences which occur as conclusions of
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some argument in Σ.

Thus the unifying power (or degree of unification) of a systematization

Σi, which corresponds to the unifying power of a basis Bi, is directly pro-

portional to the size of the conclusion set C(Σi), directly proportional to the

stringency of patterns which belong to the basis Bi, and inversely propor-

tional to the number of argument patterns of Bi. I resume the basic notions

in Figure 3.426.

Finally, we can say that the explanatory store over K, E(K), contains

arguments which are explanations of members of K. An important observa-

tion is required here. As pointed out by Kitcher, to say that the explanatory

store over K is a function of K does not imply that the acceptance of K must

be temporally prior to the adoption of E(K). This is because the promises

of explanatory power of a theory (for example Darwin’s promises in the Ori-

gins) enter in the modification of our beliefs, or more precisely in the beliefs

of a scientific community, thus modifying K [Kitcher, 1981, p. 519]. Now, if

we come back to Kitcher’s original question “When (under what conditions)

does a derivation (an argument) explain why its conclusion is true?”, we have

that in order for a derivation (an argument) to be an acceptable explanation

of its conclusion (relative to a belief corpus K), it must meet some specific

conditions: a particular argument counts as an explanation only if it belongs

to the set E(K), i.e. the best systematization of K according to the con-

ditions on unifying power. It is important to observe that Kitcher leaves

open the possibility that, for some possible K, there could be indeterminacy

in deciding how to weigh stringency, paucity of patterns and the number of

conclusions, with consequent indeterminacy about E(K) [Kitcher, 1989, p.

435].

26The diagram is basically that presented by Kitcher in his [Kitcher, 1981, p. 520].
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3.2.2 Asymmetries, irrelevance and spurious unifica-

tion

As Friedman before him, Kitcher also claims his model can solve three

traditional difficulties the covering law model could not: the problem of asym-

metry, that of irrelevance and the “problem of conjunction”. Without giving

all the details of his solutions here, I am going to illustrate the general strat-

egy27.

To exclude the wrong explanation both in the case of the “bad direc-

tion” in the asymmetry problem and in the irrelevance problem we need to

show that the arguments we want to exclude are not in the explanatory store

over K. According to Kitcher’s model, when we admit the intuitively non-

explanatory arguments what we are left with is a set of arguments whose

basis has less unifying power than that of the basis for the set of arguments

we normally accept as genuinely explanatory. Thus we rule out the wrong

explanations which appear in one direction in the asymmetry problem and

in the irrelevance problem. The criteria used for weighing the unifying power

are those proposed by Kitcher and based on paucity of patterns used, size of

conclusion set, stringency of patterns:

Intuitively, the line of solution that we want toa dopt consists in show-

ing that those who accept the wrong derivations are committed to ac-

cepting more patterns than they need, or to accepting less stringent

patterns than they should, or to generating a more restricted set of

consequences [Kitcher, 1989, p. 480-481]

Let’s consider Kitcher’s strategy for the case of the asymmetry problem.

As we saw in the previous chapter, the asymmetry problem arises in the fol-

lowing situation: if A can be used to explain A′, it is generally not the case

that A′ can be used to explain A. Van Fraassen’s case of the tower and the

shadow was precisely an illustration of this. Kitcher’s challenge is to show

27The full technical story is too long and of no interest here. For a discussion of his
solution see [Kitcher, 1981, p. 178-181] and [Kitcher, 1989, p. 482-488].
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that his theory of explanation respects this asymmetry, i.e. that his account

considers the shadow-based derivation of the tower height as not-explanatory.

Consider now e as some explanandum of type “X has length y”. Let D1

and D2 two derivations of e, valid with respect to K and whose premises

are in K. While D1 is considered intuitively explanatory, D2 violates asym-

metry and we do not consider it as a genuine explanation (as in the case of

the explanation of the height of the tower from that of its shadow length).

Now, let P1 and P2 be, respectively, the patterns instantiated by D1 and D2.

In the example of the tower and the shadow, call the pattern instantiated

by the derivation P1 origin and development pattern of length explanation

(OD pattern), while the pattern P2 instantiated by the derivation of the

tower’s height from the length of the shadow is called shadow-based expla-

nation pattern (SBE pattern). Kitcher observes that the two patterns are

not structurally identical. The OD pattern is more general and it derives

all kinds of explananda of the type “Object O has length L”28. In Kitcher’s

words: the OD pattern is

a general pattern of tracing the present dimensions to the conditions

in which the object originated and the modifications that it has since

undergone [Kitcher, 1989, p. 485]

For instance, in the case of our tower, the standard explanation of its

length might refer to facts about the intentions of its architect, the process

by which it was constructed and the tower’s resulting propensity, once built,

to remain rigid over time.

In order to account for the asymmetry, Kitcher points out that P1 fares

better than P2 in terms of unifying power relative to K. By extending the

analysis to the class of explananda E of the same type of e (and thus e ∈ E)29,

28Kitcher’s claim is that the class of all statements in K of the form “Object O has
length L” (the class of explananda of object length) are derivable from statements in K
describing facts about the origin and development of the object whose length is to be
explained. All these derivations instantiate the unique origin and development pattern of
length explanation (OD).

29Barnes has defined this way of proceeding from e to the class E “Kitcher’s widening
strategy” [Barnes, 1992, p. 562].
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Kitcher observes that P1 fares better than P2 in generating derivations (ac-

ceptable relative to K) of the various members of E. In the case of the

tower and the shadow, this amounts to saying that the OD pattern fares

better than SBE pattern in generating derivations, acceptable relative to K,

of object length. Why? The crucial observation is that the SBE pattern

only works to generate conclusions about the length of a relatively small

number of objects (the ones that actually possess shadows, i.e. the illumi-

nated objects). Thus, if we incorporate the SBE pattern in the explanatory

story E(K), we have to include in E(K) also the traditional OD pattern to

successfully generate derivations of the length of all objects (including the

objects which possess no shadow30). However, since one additional pattern

has been included in E(K) with no corresponding increase in the number

of things which may be explained, the incorporation of both patterns would

reduce the unifying power of E(K) from what it was when it contained only

the OD pattern31. For Kitcher this argument shows why, on his account, the

shadow-based derivation of tower height fails to explain the tower height and

then it must be rejected as non-explanatory.

In the previous section we saw how Michael Friedman tried to solve the

problem avanced by Hempel and Oppenheim in their footnote 28. We called

that problem the“problem of conjunction”. Kitcher addressed the same prob-

lem, and he called the phenomenon of conjunction of laws which is at the

origin of the difficulty the phenomenon of “spurious unification”. Kitcher

claimed that this phenomenon could be avoided in his account. The pos-

sibility of ruling spurious unification out is offered by the requirement that

argument patterns should be stringent (we saw the notion of stringency be-

fore). A pattern of argument
α ∧B
α

used by a scientific theory B, where

30The length of some unilluminated, shadowless object O, for example, cannot be derived
by an instantiation of the SBE pattern simply because O possesses no shadow from which
its length may be derived

31This according to Kitcher’s idea that the unifying power of E(K) is inversely propor-
tional to the number of patterns of derivation employed (criterion of paucity of patterns)
and directly proportional to the number of the conclusions generated (size of the conclusion
set).
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α can be replaced by any sentence we accept, will satisfy our criterion of

using few patterns of arguments as to generate many beliefs, but it will be

unable to meet one of the two constraints set by the criterion of stringency

of pattern: although arguments instantiating this pattern will have a simi-

lar logical form, they will not have similar non-logical vocabulary at similar

places, since any kind of vocabulary can appear in the place of α. Therefore

patterns as
α ∧B
α

or α should be excluded because as non-stringent32.

3.2.3 Unification and scientific change

Is the previous discussion the end of the story? Unfortunately, no. We

are faced with a very basic problem which has been put off until now. We

assumed that there is a set K. However, as history goes on, our beliefs and

our science change. Therefore the set K changes as a direct consequence of

our change in beliefs. Furthermore, it is also reasonable to expect a change

in the explanatory store E(K). How Kitcher’s model can account for these

transitions?

Kitcher considers two contexts in which a methodological principle di-

recting us to unify our beliefs can be expected to operate: a simple context,

in which the corpus of beliefs and its language of formulation are fixed and

the challenge is to see how the principle permits to select the best set of

derivations that unify the corpus; and a more complex context, in which the

corpus of beliefs and even the language in which our beliefs are formulated

can change. I will present Kitcher’s analysis for the two separate contexts.

This is important for two different reasons. First of all, until now we have

not considered situations in which the derivations of two (or more) system-

atizations are instantiated by two (or more) set of patterns (each of one is the

basis for the considered systematization) with different virtues and for which

the criteria of unifying power pull in different directions, neither we have

32For a complete discussion of the problem of spurious unification, including how to to
rule out the artificial introduction of restrictions on the patterns in order to make them
more stringent, see [Kitcher, 1981, p. 181-184].
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explicitly discussed the notion of ‘stringency of a pattern’ by comparing two

different patterns33. Second, a robust model of explanation must account for

explanatory changes in scientific changes, thus permitting to justify the fact

that our theories evolve and permit to explain new phenomena (or already

known phenomena in a different way). In the following two subsections I am

going to propose Kitcher’s treatment of those points.

Fixed corpus, fixed language

First of all, let’s focus on the first context, that in which we have to

assess the merits of two different systematization S and S ′ of the same body of

beliefs K (at some stage in the development of science). The systematizations

are formulated in the same language L and all members of each set are

acceptable relative to K. The principle adopted by Kitcher is the following:

(U) S should be chosen over S ′ as the explanatory store over K, E(K), just

in case S has greater unifying power with respect to K than S ′.

How do we compare S and S ′? Remember that Kitcher proposes that the

assessment of unifying power is made by evaluating the paucity of patterns

used, size of conclusion set, and stringency of patterns. In particular, for him

the unifying power of a systematization Σi is inversely proportional to the

number of argument patterns of Bi, directly proportional to the stringency of

patterns which belong to the basis Bi and directly proportional to the size of

the conclusion set C(Σi). However, it is reasonable to expect the three criteria

to pull in different directions. In this case, even if it is difficult to propose

a comparison and make a tradeoff between two sets of rival patterns with

different virtues (for instance, U and U ′, which instantiates the derivations

in S and S ′), Kitcher proposes the idea that we can always find an acceptable

way to combine the virtues of those patterns in a new set of patterns (for

33In showing Kitcher’s solution to the problem of Asymmetry, for instance, we have
considered only the notion of consequence set and that of paucity of patterns. The notion
of stringency of pattern was left quite free until now, and it has not been subject to any
quantitative analysis.
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instance, the set of patterns U∗, corresponding to a systematization S∗ that

combines the merits of the two systematizations S and S ′). To capture this

idea, he proposes a criterion (O), which tells us that U∗ does at least as well

as its rivals by the criteria of stringency and paucity of patterns, and that it

does at least as well as generating consequences over K:

(O) Let U , U ′ be sets of patterns. Then there is a set of patterns U∗ such that:

O.a there is a one-one mapping from U∗ to U , f , and a one-one mapping

from U∗ to U , f ′, such that for each pattern p in U∗, p is at least as

stringent as f(p) and at least as stringent as f ′(p); (one or both of f ,

f ′ may be injections rather than surjections)

O.b let S, S′, S∗ be the sets of derivations that are the complete instanti-

ations of U , U ′, and U∗ with respect to K; then the consequence sets

C(S), C(S′), C(S∗) are such that C(S) and C(S′) are both subsets

(not necessarily proper) of C(S∗).

However, as Kitcher himself admits, this idea is quite optimistic34. For

instance, consider the particular situation in which f : U∗ → U is a surjection

and f ′ : U∗ → U ′ is an injection, with sets of patterns U = {〈p〉1, 〈p〉2},
U ′ = {〈p′〉1, 〈p′〉2, 〈p′〉3, 〈p′〉4} and U∗ = {〈p∗〉1, 〈p∗〉2, 〈p∗〉3} (where p stands

for ‘pattern’). Figure 3.5 is an illustration of this. The new systematization

will cover the derivations covered by S and S ′ by incorporating the virtues of

both S and S ′. To state that a systematization S∗ is always possible to find

is to say that it is always possible to find a new theory which instantiates a

34In his paper “Problems for Kitcher’s Account of Explanation” [Sabatés, 1994], M. H.
Sabatés has argued that the optimistic move proposed by (O) (i.e. for some pairs of S’s
there might be a combination S∗ which synthesizes their virtues) seems implausible. He
points to three major difficulties: “First, it will be hard (to say the least) to find a general
criterion which gives us exactly those systematizations that in fact can be combined.
Second, it will be even harder to find a rationale for such a general criterion (why must
those systematizations which cannot be combined be ruled out? why can’t one of them
be the best systematization?). Third, once we have combined the virtues of different pairs
of systematizations, how shall we find the best among the combinations (S, S′, S′′′, ...)
themselves. Should we maintain our optimism about combination to the very end? In sum,
restricting the combination-candidates doesn’t seem to lead us too far” [Sabatés, 1994, p.
281-282].
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K

S S' S* ...

Π1 Π2 Π3 ... Π'1 Π'2 ...

U U'

Π*1

〈p〉1

〈p〉2 

Π*1 ...

U*

 〈p'〉1   〈p'〉2   〈p'〉3   〈p'〉4

 〈p〉1

〈p〉2

〈p〉3 

f' : U*⟶U' (injective)

U U* 

U' 

f : U*⟶U (surjective)

Figure 3.5: Optimism: The systematization S∗, whose basis is U∗, combines
the merits of the two systematizations S and S ′. Each pattern p∗ in U∗ is
at least as stringent as f(p∗) and at least as stringent as f ′(p∗), while the
consequence sets C(S) and C(S ′) of S and S ′ are both subsets (not necessarily
proper) of the consequence set of S∗, namely C(S∗).
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set of patterns which incorporates patterns included in U or U ′. For instance,

in the situation considered in Figure 3.5, the derivation intantiated in S ′ by

pattern 〈p′〉4 will be intantiated in S∗ by some new pattern 〈p′〉. Nevertheless

to have a new pattern 〈p′〉 capable to instantiate derivations which were

instantiated by old patterns (for instance, 〈p〉1 and 〈p′〉4) amounts to saying

that there exists a new theory from which the two patterns can be obtained.

By presupposing that it is always possible to find such a new encompassing

theory, Kitcher makes a quite optimistic asssertion.

Since the precedent condition (O) seems extremely optimistic, Kitcher’s

second task is to propose an explicit condition to compare the unifying power

of sets of patterns (U and U ′):

(C) Let U , U ′ be sets of patterns and S, S′ their complete instantiations with

respect to K. Then U has greater unifying power than U ′ if one (or both)

of the following conditions is met:

C1 C(S′) is a subset of C(S), possibly though not necessarily proper, and

there is a one-one mapping f from S to S′ such that for each pattern

p in S, p is at least as stringent f(p), and such that either f is an

injection or f is a surjection and there is at least one pattern p in S

such that p is more stringent than f(p).

C2 C(S′) is a proper subset of C(S) and there is a one-one mapping f

from S to S′ (either an injection or a surjection) such that for each p

in S, p is at least as stringent as f(p).

In particular, the conditions C1 and C2 apply in the following situations:

• (Cl) applies if S uses fewer or more stringent patterns to generate the same

conclusions as S′.

• (C2) holds if S does equally well as S′ by criteria of stringency and paucity

of patterns and is able to generate a broader class of consequences.

Observe that the comparative relation introduced by (C) is both asym-

metric and transitive. Thus it defines an order relation which permits to
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order sets of patterns with respect to unifying power. Furthermore, the com-

parison suggested by (C) is made on patterns which are assumed to have

a similar structure. The latter requirement is introduced in order to escape

further complications in the evaluation process.

Third, Kitcher finally comes to the notion of stringency of patterns, which

is used freely both in (O) and (C). Again, as in condition (C), for simplicity

Kitcher considers here the task of comparing pattern with a similar structure.

The relative stringency of two different patterns could be compared by

using two different criteria. If we consider patterns which have a common

classification c, we can say that a pattern is more stringent than the other

if the schemata which correspond to the first pattern are subject to more

rigourous demands on instantiation than the schemata in the second pat-

tern. Call this criterion T:

(T) Let 〈s, i〉 be a pair whose first member is a schematic sentence and whose

second member is a complete filling instruction for that sentence, and let

〈s′, i′〉 be another such pair. Suppose that s and s′ have a common logi-

cal form. Let g be the mapping that takes each nonlogical expression (or

schematic letter) in s to the nonlogical expression (or schematic letter) in

the corresponding place in s′. For any schematic letter t occurring in s, 〈s, i〉
is tighter than 〈s′, i′〉 with respect to t′ just in case the set of substitution

instances that i allows for t is a proper subset of the set of substitution

instances that i′ allows for g(t); 〈s, i〉 is at least as tight as 〈s′, i′〉 with re-

spect to t just in case the set of substitution instances that i allows for t is

a subset of the set of substitution instances that i′ allows for g(t). 〈s, i〉 is

tighter than 〈s′, i′〉 just in case, (i) for every schematic letter occurring ins,

〈s, i〉 is at least as tight as 〈s′, i′〉 with respect to that schematic letter, (ii)

there is at least one schematic letter occurring in s with respect to which

〈s, i〉 is tighter than 〈s′, i′〉 or there is a nonlogical expression e occurring in

s such that g(e) is a schematic letter, and (iii) for every schematic letter t

occurring in s, g(t) is a schematic letter. If only conditions (i) and (iii) are

satisfied, then 〈s, i〉 is at least as tight as 〈s′, i′〉.
Let p, p′ be general argument patterns sharing the same classification. Let
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〈p1, pn〉 and 〈p′1, ..., p′n〉 be the sequence of schematic sentences and filling in-

structions belonging to p and p′ respectively. Therefore p is more stringent

than p′ if for each j(1 < j < ri) pj is at least as tight as p′j and there is a k

such that pk is tighter than p′k.

However, we can have a second criterion of comparison (i.e. another way

in which a pattern can be more stringent than another). This criterion oper-

ates when the inferential transition indicated by the classification of the first

pattern refers to certain kinds of principle while the inferential transition in-

dicated by the classification of the second patter consists of a precise linking

of schematic premises. Thus, if the classification of the second pattern pre-

cludes possible instantiations which are left open by the classification of the

first pattern, then the second pattern should be regarded as more stringent.

The idea is captured in criterion R, which Kitcher formulates in the following

way:

(R) Let p, p′ be general argument patterns such that the sequence of schematic

sentences and filling instructions of p is 〈p1, ..., pn〉 and the sequence of

schematic sentences and filling instructions of p′ is 〈p1, ..., pr, q1, ..., qs, pr+1, ..., pr〉.
Suppose that the classifications differ only in that for p one or more of the

pr+j is to be obtained from previous members of the sequence by derivations

involving some further principles of a general kind G, while for p′ that (or

those) pr+j are to be obtained from the same earlier members of the se-

quence and from some of the qk by specified inferential transitions. Suppose

further that in each case of difference the set of subderivations allowed by

p′ is a subset of the set of subderivations allowed by p, and that in at least

one case the relation is that of proper inclusion. Then p′ is more stringent

than p.

As Kitcher observes, the previous comparison based on demands of in-

stantiantion is what is required when we are faced with a case of what he calls

“explanatory extension”, i.e. a situation in which one or more generalizations

employed in a derivation are enriched by being treated by a different formal

perspective. Kitcher gives an example of this kind of situation by considering
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a particular pattern of derivation in early nineteenth-century chemistry, and

then showing how this pattern has been extended by subsequent work until

the mid-twentieth century [Kitcher, 1989, p. 446]. The pattern considered,

named “Dalton”, answered why-questions of the form: “Why does one of the

compounds between X and Y always contain X and Y in the weight ratio

m : nT?”. The Dalton-pattern is so constructed:

• (1) There is a compound Z between X and Y that has the atomic formula

XpYq.

• (2) The atomic weight of X is x; the atomic weight of Y is y.

• (3) The weight ratio of X to Y in Z is px : qy (= m : n).

• Filling Instructions: X,Y ,Z are replaced by names of chemical substances;

p,q are replaced by natural numerals; x,y are replaced by names of real

numbers.

• Classification: (1) and (2) are premises, (3) is derived from (1) and (2).

With the successive development of post-Daltonian chemistry and atomic

theory, the introduction of new concepts extended Dalton: the concept of

valence and rules for assigning valences began to be used (although, at this

first stage, the attributions of valence are unexplained and there is no un-

derstanding of why the constraints hold); with the successive introduction of

the shell model of the atom chemists were given the possibility of explaining

the results about valences. In particular, by appealling to the shell model

of the atom and to principles about ionic and covalent bonding, scientists

were able to derive instances of (1) and (2) from premises that character-

ize the composition of atoms in terms of protons, neutrons, and electrons.

Finally, the derivations given at the stage in which the shell model was in-

troduced have been showed to be embedded within quantum mechanical

descriptions of the atoms. Furthermore, the shell structures and possibilities

of bond-formation have been found to be consequences of the stability of
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quantum mechanical systems35. In this situation, the pattern which extends

the original Dalton-pattern should be considered as more stringent accord-

ing to R. This is because the classification of the extended pattern indicates

a sequence of inferential transition which links in a more precise way the

schematic premises and which precludes possible instantiations which were

left open by the Dalton-pattern.

Naturally, it may happen that, by comparing two patterns, the first pat-

tern turns out to be more stringent than the second pattern according to

T, while the second pattern results as more stringent than the first when

analyzed by R. In this case, again, Kitcher leaves open the (optimistic) pos-

sibility of combining the merits of two patterns in one new pattern.

To conclude, in the case in which the corpus of beliefs and the language

are both fixed, by combining the criteria introduced (C, T, R), we are now

able compare the merits of two different systematizations (say, S and S ′) of

K: we use criterion C to choose the best generating set between the set of

patterns chosen as generating sets for S and S ′ (where, in using criterion C,

the comparison in stringency is given by T and R); to the best generating

set there will correspond the preferred systematization between S and S ′;

according to U, to the preferred systematization there corresponds the set of

derivations that best systematizes K in terms of unification – the explanatory

store over K.

New corpus, new language

The second context the unification view should be confronted with is the

context in which we have the possibility of scientific change. This situation

35Observe that, by using the idea of argument pattern (together with an extension of it),
the notion of explanatory extension does not necessarily require reduction (derivability of
laws of the reduced theory from laws of the reducing theory). This is because it might be
possible that some of the concepts of the extended theory cannot be formulated in terms
of the concepts of the extending theory. Therefore explanatory extension is considered
by Kitcher as primary to the notion of reduction in the analysis of the relations among
successive theories and in the development of a philosophical account whose aim is to
capture the idea of accumulation of knowledge [Kitcher, 1989, p. 448].
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appears more realistic and also more interesting, especially if we observe that

we often justify transitions in science by appealling to the fact that a new

corpus of beliefs (and, eventually, a new language) has greater explanatory

power than an older one.

Consider science as a sequence of practices, each one distinguished by a

language L, a corpus of belief K formulated in that language and a store of

explanatory derivations E(K). Therefore we can indicate a scientific practice

with the triple < L,K,E(K) >. The challenge for the unification account is

the following: to account for the gain in explanatory power in the transition

from a scientific practice < L,K,E(K) > to a new scientific practice <

L′, K ′, E(K ′) > in terms of greater unification in our beliefs. As natural,

Kitcher’s request is that such an account should allow transitions in science

without damaging his solution to the problem of asymmetry and irrelevance.

Here we are confronted with two different and separate tasks:

(α) to specify the conditions under which a systematization Σ′ of K ′ pro-

vides a better unification of K ′ than Σ of K does of K.

(β) given the fact that the best systematization E ′(K ′) of K ′ provides a

better unification of K ′ than the best systematization E(K) of K does

of K, to say when this accounts for the transition from < L,K,E(K) >

to < L′, K ′, E(K ′) >.

Here Kitcher does not offer a general account, but only partial conditions

which we can identify in the history of science and which seem to underlie

some transitions in history of science. On the other hand, he suggests that

the search for unification of beliefs is subject on some kinds of principles that

govern the modification of language and that rule on the acceptability of the

proposed beliefs.

By considering the first task (α), Kitcher restricts his analysis to the case

in which the shift from < L,K,E(K) > to < L′, K ′, E(K ′) > involves no

explanatory loss. Assume the validity of criteria U, C T, R seen above about

the relative stringency between patterns. By using these criteria we can find
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the unique and best systematizations of K and of K ′, which are respectively

E(K) and E(K ′). The condition of no explanatory loss is stated as follows:

[No Explanatory Loss Condition] For any statement that occurs as a

conclusion of a derivation in E(K) there is an extensionally isomor-

phic statement that occurs as a conclusion of a derivation in E(K ′).

Two statements are extensionally isomorphic just in case they have

the same logical form and the nonlogical expressions at corresponding

places refer to the same entities (objects in the case of names and sets

in the case of predicates). [Kitcher, 1989, p. 489]

This condition (which presupposes realism: objects exist independently

from theories36) is introduced in order to permit, in a shift from L to L′,

the kinds of change (“refixing of reference”) which, according to Kitcher, un-

derlie the phenomenon of incommesurability championed by authors such as

Kuhn and Feyerabend. According to the doctrine (conceptual relativism)

of those authors, for two languages used in a same scientific field at differ-

ent times (times separated by large-scale changes or so called “revolutions”)

there are expressions in each language whose referents are not specifiable

and translatable in the other language (we can’t formulate – translate – past

theories in the language of a modern theory)37. Thus the impossibility of

comparing concepts belonging to those theories (concepts, and then theories,

are “incommensurable”)38. Naturally, if we agree with this version of the

36The following quote is quite indicative of Kitcher’s realism about objects as expressed
in the previous condition of no explanatory loss: “Trivially, there are just the entities there
are. When we succeed in talking about anything at all, these entities are the things we talk
about, even though our ways of talking about them may be radically different. However
variable the connections we draw among its constituents, the world supplies a common
content for our references” [Kitcher, 1978, p. 547]. However, note that in another passage
Kitcher claims that his account is not committed to any metaphysical view: “I have been
trying to show that we can make sense of scientific explanation and our view of the causal
structure of nature without indulging in the metaphysics” [Kitcher, 1989, p. 500].

37For a defense of conceptual relativism in terms of referential change see
[Feyerabend, 1965, especially p. 270-274], [Feyerabend, 1981], and [Kuhn, 1970].

38As observed by Kitcher, referential change is neither necessary nor a sufficient con-
dition for conceptual relativism, for conceptual relativism can occur if the languages in-
volved contain completely different expressions (and then no referential change is involved)
[Kitcher, 1978, p. 521].
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incommesurability thesis, then there would be no way to study any rational

transition (in Kitcher’s sense), for it might be that the referents of their terms

cannot be compared. On the contrary, Kitcher claims that we can allow for

conceptual revision without conceptual discontinuity [Kitcher, 1978, p. 544].

The changes he calls “refixings of reference”allow for a redescription of a phe-

nomenon (explained in a old and abandoned theory, as Priestley’s phlogiston

theory) in a new language, hence discarding Kuhnian incommensurability.

The notion of extensional isomorphism captures this continuity39.

If the condition of no explanatory loss is satisfied, then we can justify the

explanatory gain in the transition from < L,K,E(K) > to < L′, K ′, E(K ′) >

in terms of explanatory unification. This could be made by looking at the

intuitive fact that we gain in explanatory power when the same number

of equally stringent patterns generate more consequences, or fewer or more

stringent patterns generate the same consequences. Thus, under the assump-

tion of no explanatory loss, the idea that E(K ′) unifies K ′ better than E(K)

unifies K is formulated by Kitcher in the following way:

C’ Suppose there is a one-one mapping f from the basis of E(K ′) to

the basis of E(K) such that for each p in the basis of E(K ′) p is at

least as stringent as f(p); and (i) f is an injection, or (ii) there is

some p in the basis of E(K ′) such that p is more stringent than f(p),

or (iii) there is some statement in the consequence set of E(K ′) that

is not extensionally isomorphic to any statement in the concequence

set of E(K). Then E(K ′) unifies K ′ better than E(K) unifies K

[Kitcher, 1989, p. 490]

Observe that C’ can be seen as a sort of generalization of criterion C

seen above: while criterion C was used to compare the virtues of two basis

in a same set of beliefs K, C’ is designed by Kitcher to compare the merits

39For a detailed discussion of Kitcher’s account of conceptual change in science and
some examples where later theories refine concepts of earlier theories see [Kitcher, 1978],
[Kitcher, 1982] and [Kitcher, 1984, especially p. 152 and p. 165-170]. What is of interest
to our discussion is that this change is possible and is captured through Kitcher’s notion
of extensional isomorphism.
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< L, K, E(K) > < L', K', E(K') >

C, T, R C, T, R
C' 

t

K'K

Figure 3.6: Criteria C, T and R operate within a set of beliefs, while criterion
C’ permits to compare sets of patterns belonging to distinct sets of beliefs
(K and K ′).

of two basis belonging to two distinct sets of beliefs K and K ′ (Figure 3.6).

Nevertheless, in order to use C’, we need a sense of the notion of relative

stringency to compare patterns which are formulated in different languages40.

According to Kitcher this could be obtained by observing that the old pat-

terns of explanation (i.e. the patterns of explanation in E(K)) are isomorphic

to subpatterns of the new patterns of E(K ′). Unification is achieved because

the new patterns can be partially instantiated in different ways to generate

patterns that were previously viewed as belonging to different fields.

As an illustration of a situation in which the comparison of patterns ac-

cords with the idea sketched above (previous paragraph), Kitcher refers to

the case of Maxwellian electromagnetic theory and Darwinian theory. In both

cases the theory came with a new language and new theoretical claims, which

introduced explanatory advantages in science. For instance, in the first case

40The strategy followed here by Kitcher is the same as in the case of fixed context
and fixed language: introduce a criterion (C, and C’ for the present contex) to compare
set of patterns, and finally propose some criteria for comparing the relative stringency of
patterns. The only difference is that in the present case we are considering the compar-
ison between sets of patters (and patterns) which belong to two different set of beliefs.
Moreover, each set of beliefs is formulated in a specific language. The assumption of no
explanatory loss -which involves the notion of extensional isomorphism- is what permits
the present comparison.
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(Maxwellian electromagnetism), the new theory provided a variety of pat-

terns which were able to generate explanatory derivations within theories

which were considered as distinct (and independent) before Maxwell. The

patterns which intantiated these derivations in Maxwell electromagnetism

are, according to Kitcher, isomorphic to the old (and distinct) patterns of

explanation coming from the various theories:

Consider Maxwellian electromagnetic theory. This supplies a variety

of patterns for generating explanatory derivations within geometrical

optics, the theory of diffraction, electrostatic interactions, and so forth.

The old patterns of explanation are isomorphic to subpatterns of the

new patterns, and unification is achieved because the same underly-

ing pattern can be partially instantiated in different ways to generate

patterns that were previously viewed as belonging to different fields

[Kitcher, 1989, p. 490]

This is why Kitcher proposes to regulate the notion of stringency in C’

(in a comparison of patterns which are formulated in different languages!)

through the notion of extensional isomorphism between patterns (as his ex-

ample of Maxwell electromagnetism inuitively suggests)41:

P’ I shall therefore propose that C’ can be satisfied by meeting condi-

tion (i) if there is one (or more) pattern of p of E(K ′) such that there

are at least two patterns of E(K) that are extensionally isomorphic to

subpatterns of p and if all other patterns of E(K ′) –that is patterns

that are not partially instantiable by isomorphs of patterns of E(K)–

are themselves extensionally isomorphic to patterns of E(K). It seems

to me that many episodes from the history of science will require com-

parisons of unyfing power that are based on more subtle conceptions

of relative stringency, but I shall not try to pursue this difficult issue

further here. [Kitcher, 1989, p. 490]

41Although Kitcher does not propose the following criterion under the form of definition,
to simplify the discussion I present the criterion as P’.
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Let’s now focus on task (β), i.e. to see when appeals to explanatory uni-

fication (the fact that E ′(K ′) provides a better unification of K ′ than E(K)

does of K) justify the transition from < L,K,E(K) > to < L′, K ′, E(K ′) >.

According to Kitcher, in order for the transition to be guaranteed by ex-

planatory unification, the condition is that the shifts from K to K ′ and from

L to L′ be defensible. For instance, in the shift from beliefs K to beliefs K ′,

this might mean that there are no strong arguments from the perspective

of < L,K,E(K) > against the addition to K of some statements (K plus

this set will result in K ′). If we have this kind of modification we say that

K is neutral towards the changes. More precisely, K is neutral towards the

changes when

a modification of K to K ′ may involve the additions of state-

ments for which there was previously no positive evidence but

which were not precluded by strong arguments from well estab-

lished principles of K (or conversely, such modification may in-

volve abandoning statements in such a way that the prior view

that there was evidence in favor of such statements is explained

as illusory) [Kitcher, 1989, p. 491].

We say that K is negative towards the changes when there are arguments

using premises that are common both to K and to K ′ either against state-

ments that would be added or in favour of statements that would be dropped.

In the case K is neutral towards the changes, the fact that the new corpus

would permit greater unification of belief justifies the transition, while in the

case K is negative towards the changes the condition for the appeal to greater

unification is not satisfied.

The theory of evolution by natural selection is an example of the former

case, while the reception of the theory of continental drift in the 1920s and

1930s is an example of the latter42. In the second case, the theory proposed

by A. L. Wegener offered an interesting perspective to “unify” geological, bio-

geographical, and paleometeorological beliefs. Unfortunately, the geologists

42See [Kitcher, 1989, p. 491-492] for a discussion of the two examples.
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had strong arguments against the fact that continents could move. Hence,

the shift from beliefs K to beliefs K ′ was not defensible and to appeal to

explanatory unification (the fact that E ′(K ′) provides a better unification of

K ′ than E(K) does of K) did not justify the transition (the theory was not

accepted in the 1920s and 1930s). To come to the first example, Darwin’s

arguments in the Origins were similar to the theory of continental drifts in

the promise of increased unification. However, the strategy through which

Darwin proposed his arguments was intended to eliminate the accepted forms

of reasoning which would have been considered incompatible with his theory.

In other words, he provided a sufficient demostration that the shift from K to

K ′ was defensible, and then the proviso for the appeal to greater unification

was satisfied.

Now, if we consider the second shift, i.e. that of language (from L to L′),

an analogous proviso could be given in order for the modification of language

to be defensible: L should be neutral towards the projectability of predicates,

i.e. in the transition some predicate already viewed as projectable from the

standpoint of L is taken to cover phenomena which have been regarded as

separate because previous scientists had seen nothing in common between

them. An example is given by Maxwell’s electromagnetic theory. With the

birth of this theory, phenomena in the propagation of light and phenomena

involving electromagnetic effects, which had been considered unconnected,

were subsumed under (projectible) predicates such as “transverse wave prop-

agated with velocity c”.

After this illustration of Kitcher’s theory, I am going to present some

criticisms which have been leveled against this model.

3.3 Is unification enough?

Criticisms against Kitcher’s unification approach to explanation are var-

ious and attack the model on different levels (metaphysical, methodological,
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epistemological)43. With regard to the general intuition which stays behind

the unification project, one famous objection is that of David Lewis44. I will

start this section by illustrating this criticism and Kitcher’s defense. As it

will be clear in a moment, Lewis’ objection will introduce some metaphysical

considerations. In line with what I have done in the first chapter, I will iden-

tify each criticism by a label: for Lewis’ criticism I will use DL, for Margaret

Morrison’s MM, for Paul Humphreys’ PH, for Eric Barnes’ EB, for Jamie

Tappenden’s JT, for Johannes Hafner and Paolo Mancosu’s MH.

(DL) In illustrating his account, Kitcher proposes some criteria to say

when a derivation should be considered an acceptable explanation of its con-

clusion (relative to a set of beliefs). However, the partisans of the causal ap-

proach to explanation (such as Lewis) clearly distinguish between an accept-

able explanation and a correct (or true) explanation. For them, an acceptable

explanation is an explanation which identifies what would be rational (for a

person who has a particular set of beliefs) to take as the causal structure

underlying the explanandum phenomenon. On the other hand, a correct ex-

planation is an explanation that identifies the causal structure underlying

the phenomenon45. Now, although Kitcher does recognize the importance of

causal explanations, he does not focus extensively on the distinction between

a correct (or true) and an acceptable explanation. This creates a tension with

the partisans of the causal view on explanation. Furthermore, this tension

sparks criticisms such as that of David Lewis.

Lewis’ argument can be summed up in the following way: unification’s

partisans consider as explanatory relevant those factors that figure in a unifed

treatment of phenomena; however, if the world is messy and confused (why

not?), then factors which are causally relevant to phenomena may be a mix-

43From now on I will refer to the “unification account” in Kitcher’s sense. Whether I
will discuss Friedman’s model, I will explicitly refer to that account.

44Lewis’ criticism is reported by Kitcher in his [Kitcher, 1989, p. 494-497], while a reply
to the objection is given by the author in [Kitcher, 1989, p. 498-499].

45Naturally, behind this distinction there is a particular metaphysical view. Observe how
the causal view on explanation comes with a strong form of realism: world has a structure
and a true explanation identifies the causal structure which lies under the phenomena.
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ture of disconnected facts; hence the unification model of explanation (which

seems to assumes a priori that our nature is not such a messy place) would

not reveal (‘trace’) the causal structure of phenomena and would even reject

causal explanations because not acceptable (in other words: unification would

not be crucial to explanation). If the world is not unified, then the unification

account is attributing to nature an a priori structure that nature may not

have. A similar observation about the possibility of attributing the world a

unified structure it might not possess has been proposed by Peter Railton:

“If unification provides a criterion of explanation, and if explanation is evi-

dence of truth, then unification is evidence of truth. Yet how does the realist

know a priori that the world we inhabit is a unified one?” [Railton, 1989,

p. 228]. Observe that both Lewis’ and Railton’s arguments assume that the

unification account aims to provide a true explanation. Although Kitcher is

more focused on acceptable explanations, the tension here is acute because

Kitcher accepts the existence of “true causal statements” [Kitcher, 1989, p.

494]. How then does Kitcher reject this argument, and more particularly

Lewis’? He tries to offer a characterization of correct explanations by taking

as metaphysical assumption that causal truths are not independent of our

search for order in the phenomena [Kitcher, 1989, p. 497]. This marks an

evident dividing line with causal partisans who, on the contrary, believe in

this kind of independence46. Furthermore, to endorse this metaphysical view

does not commit Kitcher to give a justification (from the point of view of

unification) or an identification of the causal structure of the world which is

independent of our search for order in the phenomena (this is what Lewis

seems to presuppose in his argument against Kitcher, i.e. the fact central

to explanation is the identification of the causal structure of the world). As

Kitcher puts it:

[...] on the version of the epistemic conception developed here (the

46For instance, by claiming that there exists a number of fundamental causal mechanisms
in the world. According to Salmon, “to explain a particular occurrence is to show how it
fits into the causal network of the world” [Salmon, 1984a, p. 276]. The causal network of
the world exist independently of our way to identify them in explanations.
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unification approach) unification is constitutive of explanation, while

on Salmon’s version of the causal approach, unification is at best a

contingent concomitant of the tracing of causal structure. The heart of

the unification approach is that we cannot make sense of the notion of a

basic mechanism apart from the idea of a systematization of the world

in which as many consequences as possible are traced to the action of

as small a number of basic mechanisms as possible. In short, on the

unification approach, the basic mechanisms must be those picked out

in the best unifying systematization of our best beliefs, for if they were

not so picked out then they would not be basic. [Kitcher, 1989, p. 497]

We have already seen as Kitcher proposes to conceive science as a sequence

of practices, where each practice is distinguished by a language, a body of

belief, and a store of explanatory derivations. His strategy is to define what

counts as a correct explanation in terms of modification of practices in science.

More precisely, he considers that correctness is obtained in the ideal long run

when the principles of rational modification (a static principle of unification

which operates in a body of belief and permits to obtain the explanatory

store for that a body of belief K; plus a dynamic principle, subject to the

condition seen in the previous section, that directs us to modify practice so

as to achieve advances in unification) are followed:

[...] true statements are those that belong to the belief corpus of sci-

entific practice in the limit of its development under the principles

of rational transition. Finally, and most important for present pur-

poses, correct explanations are those derivations that appear in the

explanatory store in the limit of the rational development of scientific

practice. [Kitcher, 1989, p. 497-498]

With the previous considerations in his hands Kitcher observes that he

is now able to face Lewis’ criticism. In particular, retaining the connection

between explanatory relevance and causal relevance (i.e. “If F is causally

relevant to P then F is explanatorily relevant to P”), his defense from Lewis’

objection consists in providing grounds for rejecting the following claim:
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It is possible (and may, for all we know, be true) that there is a factor F

that is causally relevant to some phenomenon P such that no derivation

occurring in the explanatory store in the limit of scientific practice derives

a description of P from premises that make reference to F .

The grounds adduced to reject this claim are that the notion of causal

relevance depends on the notion of explanatory relevance, but what is ex-

planatorily relevant is what figures in the systematization of belief in the

limit of scientific inquiry (as guided by the search for unification). In other

words: in the limit of our attempts to systematize our beliefs (and to achieve

a unified view of the world), what is explanatorily relevant will emerge and

therefore also all basic causal explanatory mechanics will be captured in the

same limit47.

The growth of science is driven in part by the desire for explanation,

and to explain is to fit the phenomena into a unified picture insofar

as we can. What emerges in the limit of this process is nothing less

than the causal structure of the world [Kitcher, 1989, p. 500]

(MM) A second general line of criticism is put forward by Margaret

Morrison. Although she agrees on the primary role of mathematics in attain-

ing unity ([Morrison, 2002, p. 247] and [Morrison, 2000]), she claims that

unification has little if anything to do with explanation. Explanation and

unification are different (and sometimes conflicting) businesses, they pull in

different directions. The point is stated many times throughout Morrison’s

book Unifying Scientific Theories :

Rather than analysing unification as a special case of explanatory

power, as in commonly done in the literature, I claim that they fre-

quently have little to do with each other and in many cases are actually

at odds [Morrison, 2000, p. 2]

47By observing that “there is no a priori guarantee of how successful we shall be in
achieving unification”, Kitcher does not propose any particular degree of unification that
this limit must reach [Kitcher, 1989, p. 499].
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[...] explanation and unification may not be as closely related as has

typically been thought; unity is possible without a satisfactory level

of explanatory power [Morrison, 2000, p. 4]

Unity and explanatory power are different and often conflicting goals

[Morrison, 2000, p. 34]

In her discussion of Kitcher’s example of Darwinian theory, Morrison

points out that the unification permitted by natural selection is not able to

account for its explanatory power (“I do not want to deny that natural se-

lection can have explanatory power; rather, my claim is that its explanatory

power cannot be understood in terms of its unifying power” [Morrison, 2000,

p. 201]). Thus, contrary to what is claimed by Kitcher, we can have cases

of unification without explanatoriness. In addition to this, Morrison under-

lines that unification and explanatory power could be conflicting goals. This

claim is justified by observing that unification is facilitated by generality

and abstraction, but in this process the details which provide us with ex-

planatoriness, i.e. the details which should give us the explanation of the

physical dynamics of the unified theory, are sacrified [Morrison, 2000, p. 5].

For instance, Morrison shows how, in the case of Maxwell’s electrodynam-

ics, the initial encompassment of electromagnetism and optics was obtained

by Maxwell by demonstrating that the velocity of electromagnetic waves

travelling through a material medium (aether) was equal to the velocity of

light v. However, later versions of the theory did not rely on the aethereal

medium and derived the velocity v from the field equations formulated in the

Lagrangian formalism. Hence, at this mature stage (the stage of the field-

theoretic description), no explanation is given of how electromagnetic waves

are propagated through space. Therefore, while the unification is obtained

through abstraction and generality by mathematizating the phenomena us-

ing the mathematical Lagrangian apparatus, the explanatory power is lost

in this process. A similar example is given by Morrison for the case of the

unification of terrestrial and celestial phenomena made by Newton’s Prin-

cipia. In this case, it is a well-known fact that with the Principia there was
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a move away from explanations of planetary motions in terms of mechanical

causes48. Thus Morrison observes that:

Of course, the inverse-square law of gravitational attraction explains

why the planets move in the way they do, but there is no explanation

of how this gravitational force acts on bodies (how it is transported),

nor is there any account of its causal properties. [Morrison, 2000, p.

4]

However, it seems to me that Morrison’s criticism lacks of power here.

The kind of (acceptable) explanations which are linked to the unification

process in Kitcher does not necessarily have to be causal (i.e. mechanical).

In Kitcher’s sense, what is important is that the shift from the mechanical

to the new mathematical explanation (inverse-square law) produces “good”

unification in terms of patterns. In the new framework of the Newtonian the-

ory, it could make no sense to ask how the gravitational force is transported.

The right question (in Kitcher’s sense) is: does the Newtonian general pat-

tern provide us with the correct unification? What is important is that the

derivation satisfies certain unification criteria, which are stated in Kitcher’s

model. Morrison’s objection seems to be based on the view that an accept-

able explanation must provide the causal history, while Kitcher explicitly

denies that causal explanations are primary to theoretical explanation and

that we obtain explicit knowledge of causal dependency in his account:

Thus the picture advanced by the unification approach shows the con-

cept of causal dependence as derivative from that of explanatory de-

pendence, but it does not promote the dubious idea that each of us

gain explicit knowledge of causal dependencies through recognition of

the structure of the explanatory store [Kitcher, 1989, p. 436]

(PH) By offering one example concerning elementary logic, Paul Humphreys

has tried to attack one core idea of the unification account and show that
48In the Introduction I have remarked how Yves Gingras considers this explanatory

shift as an ‘epistemic effect’ of the process of mathematization started with Newton
[Gingras, 2001].
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the connection between increased understanding and a process of abstraction

(a process of abstraction such as the process of unification, i.e., the process

of seeing common patterns underlying different phenomena) is more compli-

cated and could not be completely rendered by Kitcher’s account in terms of

patterns of unification [Humphreys, 1993].

Take two different axiomatizations of classical propositional logic L and

L′ which differ only in their axiom schemata. According to Kitcher’s rules of

comparing unifying power of patterns, a pattern instantiated by L is supposed

to provide greater unifying power than that instantiated by L′. Moreover,

in Kitcher’s general framework, this means that L is also supposed to pro-

vide better understanding than that given by L′. Nevertheless, Humphreys

remarks, to the eyes of logicians the understanding of the formal system

provided by the two axiomatizations is exactly the same, and therefore “it

is obvious that the single argument pattern of L does not give us this [un-

derstanding]” [Humphreys, 1993, p. 187]. Here the criticism put forward by

Humphreys points to a more general level:

Understanding is an epistemological concept. Unless we can have

some, perhaps imperfect, epistemic access to the ideal agent’s cri-

teria for comparative understanding, we have no grounds for assessing

the correctness of the ordering relations imposed on understanding

by appeal to the ideal agent. And in the present case, it is scarcely

credible that by extrapolation from your present epistemic state, your

understanding of propositional logic through L will surpass (and not

just equal) your understanding of it through L′. [Humphreys, 1993,

p. 187]

In passing, let me report here that the linkage unification-understanding

has been criticized by various authors49. By denying the fact that explanatory

49For instance, Jaegwon Kim: “But what does the unification approach tell us about
explanation and understanding? Surprisingly little, I think. [...] is it so clear that the
concept of unification, whether taken pre-analytically or in either of the senses explicated
by Friedman and Kitcher, is any closer to understanding?” [Kim, 1994, p. 65].
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power follows from unification, also Margaret Morrison rejects that unifica-

tion is a key to understanding on the basis that the mathematical part of

a MEPP confers the explanation a high contingent character, thus reducing

the explanatory power and our potential of understanding of the phenomena

involved50:

Often an identification of a phenomenon with a particular mathe-

matical characterization is highly contingent, and the generality of

such frameworks is such that they provide no unique or detailed un-

derstanding of the physical systems that they represent. That is to

say, we can predict the motions of the phenomena from dynamical

principles, but we have no understanding of the causes of motion.

[Morrison, 2000, p. 30]

(EB) While Humphreys focused on the linkage understanding-unification,

Eric Barnes has proposed examples where Kitcher’s model is unable to ac-

count for the asymmetric structure of the explanation [Barnes, 1992]51. In

particular, Barnes offers examples of maximally unifying but nonexplanatory

argument patterns, i.e. the sort of patterns that Kitcher denies to exist. In

one of his examples Barnes considers a closed Newtonian system S whose

laws are temporally symmetric. This example is important because the case

of Newtonian mechanics is exactly the case considered by Kitcher in his ex-

ample of argument pattern.

Barnes considers the class of explananda E as the set of all statements in

K of the form “Object O in system S has position P and velocity v at time

t”. We are then in the following situation: we have at least one complete

description D of the system at some time t in K; K is deductively closed;

Newton’s laws L are in K. With the foregoing stipulations, the class of ex-

plananda E will contain a complete set of descriptions of the position and

50Again, it seems to me that Morrison is wrong in trying to criticize Kitcher’s approach
by requiring as good understanding that understanding which emerges from causal factors.

51Remember that the ability for Kitcher’s model to solve the asymmetry problem and
overcome this obstacle was considered by Kitcher as one of the fundamental advantages
of the unification account [Kitcher, 1989, p. 487-488].
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velocity of all objects in S for each moment (past, present and future) in the

history of the system. Those derivations will be the result of combining D

together with Newton’s laws L. The classical kind of Newtonian pattern (the

same considered by Kitcher) from which we deduce a statements e in E is

called by Barnes the ‘Newtonian predictive pattern’. Nevertheless, as Barnes

correctly observes, in our system S the fact that Newton’s laws are tem-

porally symmetric permits the introduction of another symmetric pattern,

called the ‘Newtonian retrodictive pattern’, which permits to retrodict the

same explanandum e (in both the two patterns we derive the particular po-

sition and velocity of an object O, namely our explanandum, starting from a

state of the system –initial conditions– plus Newton’s laws). The only struc-

tural difference between the predictive and the retrodictive pattern will be in

the temporal reference which appears in the filling instructions. For instance,

if we consider a moving particle, by using Newton’s dynamic equations plus

later states of the system (say, at time t′′) we can derive conclusions about

any earlier states (say, for example, at time t′, where t′ < t′′). In this case,

in which we consider as explanandum an event at time t′, in the set of filling

instructions the dummy letter θ would be replaced by an explicit function of

time t′. To give a concrete illustration of retrodictive pattern, let me take the

example of moving projectile I considered in subsection 3.2.1, where I offered

a concrete example of the Newtonian pattern.

In that case, we started with initial conditions t0 and velocity v0 and we

showed how from the Newtonian pattern we are able to predict a future state

of the system (explanandum e), at time t′ > t0. However, suppose we would

have known the state (position and velocity) of the system at a time t′′ > t′

(on the temporal axis: t0 < t′ < t′′). In that case, using the same derivation,

we could have used the same pattern to infer that the projectile had a par-

ticular state at time t′ before t′′. The explanandum, i.e. the position of the

projectile at time t′, is the same. The only difference in the derivation would

have been in the filling instruction set of the retrodictive pattern, where θ

would have been replaced by ‘V0t
′ + 1

2
gt′2’. We could then have used the
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retrodictive pattern to derive the projectile position at time t′ by using a

later configuration at time t′′.

Now, it is then easy to see what’s wrong with this latter derivation. The

problem comes from the fact that, while the Newtonian predictive pattern

is intuitively explanatory of the members of E (such as e), the Newtonian

retrodictive pattern is not. And this is because to explain some explanan-

dum e by using facts that occurred subsequent to it is, intuitively, a not

genuine explanation. However, the patterns are identical with respect to

their unifying power (to make a substitution in the filling set does not affect

unifying power, at least according to the criteria proposed by Kitcher). This

is exactly the problem of asymmetry. Thus, if the two patterns have equal

unifying power under Kitcher’s model but one of them is (intuitively) nonex-

planatory, it seems that we have to give up or modify the linkage proposed

between unification and explanation52.

Clearly, if two argument patterns [the Newtonian predictive and the

Newtonian retrodictive patterns] may be of equal unifying power but

are such that one pattern is explanatory and the other not explanatory,

then we cannot in general settle the question of a pattern’s explana-

tory force on the basis of considerations about its unifying power.

[Barnes, 1992, p. 565-566]

In general, according to Barnes, Kitcher’s ‘widening strategy’ (presented

in subsection 3.2.2) will not able to “save the wrong explanation” (and thus

52In his paper “How the Unification Theory of Explanation Escapes Asymmetry Prob-
lems” [Jones, 1995], T. Jones offers a potential way to escape Barnes’ criticism and permit
Kitcher’s model to avoid the wrong retrodictive explanation. In particular, Jones adduces
a very simple argument to save Kitcher from Barnes’ objection. He points out that al-
though the two patterns (Newtonian predictive and retrodictive patterns) can generate the
same conclusion, when we use the retrodictive pattern we are adding a new type of pattern
to our systematization. Nevertheless this pattern would give us the very same conclusion
that we get from a commonly used family of patterns, i.e. the family of patterns that are
used to explain something by describing its forms/condition at the time of origin and how
subsequent forces have altered that condition to produce a present or future state (among
them figures the Newtonian predictive pattern). As a consequence, if the unifying power
is inversely proportional to the number of patterns used (criterion of paucity of patterns),
to add this new pattern would decrease the unifying power of our systematization and this
is why the retrodictive ‘backward’ pattern should be rejected as not explanatory.
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the problem of asymmetry), because the character of temporal symmetry of

Newton’s laws L will make the wider classes E1, E2, E3, ... always cover-

able by both the predictive and the retrodictive pattern. In other words,

the widening strategy will not allow to eliminate the “wrong” explanation as

nonexplanatory, and thus account for the intuitive asymmetry.

Barnes’ criticism is twofold. It also attacks Kitcher on the epistemological

level. Kitcher considers “the concept of causal dependence as derivative from

that of explanatory dependence” [Kitcher, 1989, p. 436]. Thus, the fact that

predictive and retrodictive patterns have, in the unification model, the same

explanatory force, entails in Kitcher’s antirealist account of causation that

the symmetry is transmitted also to the causal relation: there is no causal

asymmetry between earlier and later states of a Newtonian system. In other

words, the causal relation between earlier and later states of the system is

symmetric, i.e., state 1 causes state 2 and state 2 causes state 1, which is an

obvious counterintuitive claim. This is why, against Kitcher’s claim that the

causal structure of the world derives from explanatory (unificatory) stories,

for Barnes the causal dimension must be considered primary to scientific

explanation. However, while Barnes claims for the essential role of causa-

tion in any account of explanation, Kitcher’s remarks about the existence of

non-causal explanations in such domains as formal syntax or mathematics

[Kitcher, 1989, p. 422-428] underline the fact that is very likely that causa-

tion could be only part of the story about explanation.

While the previous citicisms concern general aspects of Kitcher’s account

(impossibility of having a unified structure for the world, disjunction be-

tween explanation and unification, impossibility for Kitcher of solving the

traditional problem of asymmetry, non-linkage unification-understanding),

the last two criticisms presented here, i.e. that of Jamie Tappenden in his

[Tappenden, 2005] and that of Johannes Hafner and Paolo Mancosu in their

[Hafner et al., 2008], point to some technical difficulties of the unification

approach. Both criticisms deal with real cases of mathematical explanation

within mathematics, and both give primary importance to the practice of
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mathematics in their discussions. The latter is the reason why those authors

claim for a bottom-up methodology, i.e. they consider that the philosophical

investigation of the notion of explanation should start by considering real

cases from the mathematical practice. Moreover, as we will see below, they

agree on demanding Kitcher’s theory to introduce some qualitative reinforce-

ment in its apparatus.

(JT) Jamie Tappenden gives a general discussion of the unification ap-

proach for cases of mathematical explanation within mathematics [Tappenden, 2005].

He points out that existing accounts of unification are more balanced on

quantitative restrictions (for instance, the quantity of patterns in Kitcher’s

formulation) and need to be supplemented with qualitive reinforcements. His

idea is that only such qualitative reinforcements would permit the unifica-

tion model to reflect the actual mathematical practice. This idea occurs

many times in his paper. Just to quote a significant passage:

Though unification accounts have a grain of truth (since a phenomenon

(or cluster of phenomena) called “unification” is in fact important in

many cases) we are far from an analysis of what “unification” is. In

particular, the degree of unification cannot be usefully taken to turn

upon simple syntactic criteria such as counting axioms or argument

patterns. I’ll argue that existing unification - based accounts need

to be supplemented by an account of qualitative distinctions between

homogeneous and heterogeneous theories, between “natural” and “ar-

tificial” predicates. I’ll argue further that in both mathematical and

broader scientific practice, rational distinctions between more and less

natural properties are made systematically. [Tappenden, 2005, p. 147-

148]

Thus, according to Tappenden, we need to study the qualitative features

of a theory, i.e. “what makes a framework, and the categories in it, natural

and homogeneous or whatever” [Tappenden, 2005, p. 167]. As an example, he

takes the framework of geometric algebra as offered in Artin’s textbook Geo-

metric Algebra [Artin, 1957]. In Artin’s framework the role of visualization is
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central and contributes to the theoretical fecundity of his theory. In particu-

lar, as Tappenden suggests, visualization is the qualitative feature that con-

tributes to the assessment of the framework as “natural” [Tappenden, 2005,

p. 180, 182-83].

To find a place for unification as a scientific and mathematical suc-

cess, as it is treated in practice, we need to clarify certain qualitative

features of theories and the properties they deal with. Which classes

and theories are homogeneous and which are heterogeneous? Which

classifications and properties are natural and which artificial? We

need to be clear about what sorts of considerations are brought to

bear, in deciding what formulations are the right ones to use. The

conclusion suggested here, especially as exemplified in the case of Ge-

ometric Algebra, is that these distinctions are, in practice, made out

in a way that is rationally justifiable, but also that they appeal to

details of mathematical and scientific practice that are more involved

and case-specific than philosophical accounts of explanation as unifi-

cation have appreciated. This suggests that we reorient our concep-

tion of the methodology of mathematics in a “bottom up” direction.

[Tappenden, 2005, p. 187]

I will return to the distinction between “bottom-up” and “top-down”

methodologies in the next chapter. Nevertheless, it is worth observing here

that for Tappenden qualitative injections would permit Kitcher to have a

unified treatment of explanations in mathematics and in natural sciences

[Tappenden, 2005, p. 174].

(MH) Finally, Johannes Hafner and Paolo Mancosu’s criticism is an at-

tempt to test in detail Kitcher’s theory of explanation by comparing it with

a case taken from real algebraic geometry [Hafner et al., 2008].

As we have seen in the subsection 3.2.3, Kitcher discussed the case of a

rational transition from < L,K,E(K) > to < L′, K ′, E(K ′) >. In particular,

his attention was focused on the conditions under which a systematization Σ′

of K ′ provides a better unification of K ′ than systematization Σ of K does
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of K. Thus Kitcher’s model permits to compare only different systematiza-

tions of K belonging to K itself, with premises and conclusions in K (and

the same holds for K ′). Now, there are cases in mathematics where the kind

of systematization which appears in the rational shift is called by Kitcher

“systematization by conceptualization”53. Kitcher’s discussion of Lagrange’s

analysis of resolvent equations and permutation of equations, which permit-

ted to say when the solution of some particular equations can be reduced to

the solution of equations of lower degree, is one of them [Kitcher, 1984, p.

221].

Generally, systematization by conceptualization consists in modifying

the language to enable statements, questions, and reasonings which

were formerly treated separately to be brought together under a com-

mon formulation. The new language enables us to perceive the com-

mon thread which runs through our old problem solutions, thereby

encreasing our insight into why those solutions worked. This is es-

pecially apparent in the case of Lagrange, where, antecedently, there

seems to be neither rhyme nor reason to the choice of substitutions

and thus a genuine explanatory problem. [Kitcher, 1984, p. 221]

Consider now an alternative axiomatization to Euclid (say, Euclid∗), which

uses different axioms from Euclid but which is constructed from the same sen-

tences used by Euclid in K. Kitcher’s criteria would permit the comparison

among the axiomatizations. However, as Hafner and Mancosu observe, it

should be possible that a new systematization would use axioms formulated

in a richer language (L∗) than the sentences of K. In that case, the new

axiomatization would not use sentences coming from K, as in the case of

Euclid and Euclid∗, although these sentences would turn out to be equally

accepted by the members of K (this would represent, according to Kitcher,

a case of systematization by conceptualization). Now, as we said above,

53The other kinds of systematization suggested by Kitcher is “systematization by ax-
iomatization”. See [Kitcher, 1984], chapter 9, for his discussion of the pattern of axioma-
tization.
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Kitcher’s model permits a comparison only between systematizations of K,

where derivations have premises and conclusions belonging to K. What then

if we would like to make a comparison between the new axiomatization and

one which uses sentences from K? We would like to say when the set K∗ of

new sentences formulated in the new language L∗ offers a better explanation

of K. To be more precise, we would like to decide when the new systemati-

zation, which appeals to a class of sentences K∗ richer than K, gives a better

explanation of a sentence (a mathematical theorem, in the present case) al-

ready contained in K, and thus a better unification of K. Also Kitcher seems

to be aware of this point, when he writes:

For we ought to allow for the possibility that a why-question might

be answered by producing a derivation among whose premises is some

proposition (or propositions) that is not expressed by any statement

in K but which would be rationally accepted by those who believe

the members of K. It is even possible that why-questions should be

answered by derivations instantiating patterns that are not in the basis

of E(K) but that would be included in the basis of E(K∗) where K∗

would be rationally accepted by those who acceptK and who recognize

the validity of the derivations in question. [Kitcher, 1989, p. 435]

Hence Hafner and Mancosu propose a modification to Kitcher’s theory,

by allowing that in the evaluation of systematizations of K it should be pos-

sible to appeal to a class of sentences K∗ richer than K. This is made by

introducing the following amendment: a systematization of K is any set of

arguments which derive sentences in K from other sentences in K∗, where

K∗ is a consistent superset of K and where K∗ can be rationally accepted by

those who accept K [Hafner et al., 2008, p. 219]54. We have then a modifica-

tion in what counts as an acceptable set of derivations: a set of derivations is

acceptable relative to K just in case the conclusion belongs to K, every step

in the derivation is deductively valid and each premise and each derivation

54Observe that this extension still leaves open the possibility that K∗ be identical with
K.
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belong to K∗. This modification, they suggest, allows Kitcher’s model to

analyze a variety of situations which are very common in mathematics and

in science [Hafner et al., 2008, p. 219].

The test case chosen by the authors is taken from the domain of real alge-

braic geometry and is a particular theorem about real closed fields (RCF )55:

Theorem 3.1. A polynomial f(x1, ..., xn) assumes a maximum value on any

bounded closed semi-algebraic set S ⊂ Rn

For this theorem, in his book Partially Ordered Rings and Semi-Algebraic

Geometry [Brumfiel, 1979] the mathematician Gregory W. Brumfiel has of-

fered three different methods of proofs, which correspond in Kitcher’s termi-

nology to three different systematization of RCF .

A first proof strategy is based on the so called Tarski-Seidenberg (T-S)

decision procedure, which is considered by Brumfiel as a ‘useful tool’ for prov-

ing theorems in RCF but not a proof technique which offers an explanatory

proof56. A second proof strategy appeals to transcendental methods (and

more particularly on a consequence of the Tarski-Seidenberg decision proce-

dure), while a third proof draws on purely algebraic means and is considered

by Brumfiel as a proof which also ‘explains’ the result. The modification

to Kitcher’s model permits Hafner and Mancosu to evaluate the different

systematizations of RCF , which in Kitcher’s sense is the set K to be system-

atized (in fact, RCF is the consistent and deductively closed set of elementary

sentences true in any real closed field), and this by going beyond the language

and the sentences of RCF . In this case this modification is essential because

the T-S decision alghoritm does not belong to RCF as a theorem but it is a

55Informally, a real closed field is a field which admits a unique ordering, such that every
positive element has a square root and every polynomial of odd degree has a root. One
example of RCF is the set of real numbers R. The theory of RCF is the deductive closure
of its axioms: Axioms for field; Order axioms; ∀x∃y(x = y2 ∨ −x = y2); For each natural
number n, ∀x0∀x1...∀x2n∃y(x0 + x1 · y + x2 · y2 + ...+ x2n · y2n + y2n+1 = 0.

56Given any first order sentence ϕ in the language of RCF (an “elementary sen-
tence”), the Tarski-Seidenberg decision alghoritm outputs 1 if RCF proves ϕ, 0 if RCF
proves ¬ϕ. The procedure is described in [Tarski, 1951] and [Seidenberg, 1954]. See also
[Van den Dries, 1988] for a concise history of how the procedure was introduced.
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statement in its metatheory, and thus requires the introduction of a consistent

superset (of RCF ) as the set from which sentences of RCF may legitimately

get premises and derivations. The core of their criticism is that by evalu-

ating the different systematizations, Kitcher’s model considers as the best

systematization of K that provided by the T-S decision procedure57, which

is explicitly rejected by Brumfiel as non-explanatory [Brumfiel, 1979, p. 166].

Moreover, the model is not able to compare two rival systematizations (the

proof strategy which appeals to transcendental methods and that which uses

algebraic resources) and discriminate between them. Therefore, by remain-

ing silent in choosing between two rival proof techniques and in failing in

accounting for Brumfiel’s consideration about the non-explanatoriness of the

proof coming from the T-S decision procedure, Kitcher’s model conflicts with

the mathematical practice.

Hence Kitcher’s model of explanation would declare the set of all in-

stantiations of this single argument pattern [the argument pattern

coming from the instantiation of the T-D procedure] as the explana-

tory store over K, i.e. the set of – explanatory – arguments which

best unifies K. This result clearly conflicts with mathematical prac-

tice since Kitcher’s model ends up positing as the best systematization

one which in practice does not enjoy the properties of explanatoriness

that Kitcher’s model would seem to bestow upon it. Even worse, not

only do arguments in this “explanatory store” in general fail to be

considered as paradigm explanations, they are hardly ever used at all

by working mathematicians because of the limited feasibility of the

decision algorithm. [Hafner et al., 2008, p. 228]

Finally, as Tappenden, also Hafner and Mancosu agree on the fact that

Kitcher’s model should be supplemented with some qualitative reinforcement

in order to account for the intuitions coming from the practice of the math-

ematicians:

57This is because the systematization corresponding to the T-S procedure permits to
generate all of K with only one pattern, thus scoring best in terms of unification power.
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Yet, despite its focus on unification Kitcher’s account of explanation

apparently does not have the resources to provide insight into the

controversy over the “right” proof methods or at least enhance our un-

derstanding of Brumfiel’s motivations. One of the reasons for Kitcher’s

failure may lie in the fact that his account, although much more so-

phisticated than Friedman’s model, still shares the latter’s basic intu-

ition, namely that unifying and explanatory power can be accounted

for on the basis of quantitative comparisons alone. However, in the

controversy over the use of transcendental methods in real algebraic

geometry the point at issue concerns qualitative differences in the proof

methods. [Hafner et al., 2008, p. 233; my italics]

3.4 Where are MEPP?

What interests us are mathematical explanations in science. Thus it is

very natural to ask: where are MEPP? In what sense is Kitcher’s model rel-

evant to the topic of this dissertation?

In the Introduction to this dissertation I quoted a passage from [Mancosu, 2008b]

and I observed that MEPP are explanations of physical phenomena where

mathematics plays an essential role in the explanation provided. Now, an ac-

count of MEPP should address such kinds of explanations. However, there is

also the possibility that an account of explanation addresses MEPP and other

kinds of explanation as well, and that this choice derives from a particular

theoretical standpoint. With respect to Kitcher’s example of the Newtonian

pattern, we have seen that the mathematical ingredients did not explicitly oc-

cur as terms of the schematic argument. They were replaced in the schematic

sentences according to the filling instructions. For instance, the dummy let-

ter β in the schematic argument was replaced by an algebraic expression

according to a specific filling instruction. On the other hand, in Kitcher’s

example of the Dalton pattern that I reported in subsection 3.2.3, the filling

instructions contained the directions to replace the dummy letters by names

of chemical substances (and not mathematical expressions). What is then the
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common ingredient to these patterns? I think that Kitcher would answer: the

fact that these patterns are instantiated by some particular derivation. The

fact that these patterns make (or not make) use of mathematical ingredients

does not make difference for the unification model. The focus of Kitcher’s

unification is not on the mathematical or on the empirical ingredients of the

pattern (or on the mathematical or empirical ingredients of the derivations

which instantiate these patterns), but more on the fact that the pattern is

instantiated by some derivation. In fact, as I have already put forward at

the beginning of section 3.2, Kitcher considers his model of unification as

a unique model covering both explanations in natural science and mathe-

matics. Therefore, differently from Steiner, he does not provide a specific

answer to the question “When do we have a mathematical explanation for

a physical phenomenon?” According to the unification way of thinking, the

criterion in order to have an explanation (both in science and mathematics)

is given by the fact that we have an argument belonging to the explanatory

store E(K) over K, and this explanatory store contains particular derivations

which minimize the number of patterns of derivation employed and maximize

the number of conclusions generated. This is the essence of Kitcher’s “theo-

retical” unification. In this sense, Kitcher’s model must be regarded also as

an account of MEPP. Moreover, behind this theoretical unification there is a

methodological holism, because the theory proposed by Kitcher considers the

system “science-mathematics” as a whole and it is not focused at the sublevel

of structures of natural science or mathematics. As Jaegwon Kim observes:

To put it somewhat crudely, explanation is a matter of the shape and

organization of one’s belief system, not of its content. Both Kitcher’s

and Friedman’s accounts make explanation a holistic affair: whether or

not a given derivation is an explanation cannot be determined locally,

just by looking at the derivation; it depends on facts about the whole

belief system. [Kim, 1994, p. 64]

These considerations give me the occasion to trace a dividing line be-

tween Kitcher’s conception of MEPP and Steiner’s. Steiner’s model, as we
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have seen in chapter 1, is parasitic on his account of mathematical expla-

nation within mathematics. Steiner thinks that an account of MEPP must

be dependent on a separate account of explanation in mathematics. On the

other hand, Kitcher regards his model as able to cover MEPP as well as other

kinds of explanations in mathematical and in empirical science. Therefore he

does not think that we do necessarily need to construct a theory of MEPP

which relies on some particular account of mathematical explanations within

mathematics. This is in contrast with Mancosu’s suggestion that:

[...] it is conceivable that whatever account we will end up giving

of mathematical explanations of scientific phenomena, it won’t be

completely independent of mathematical explanation of mathemati-

cal facts (indeed for Steiner the former is explicated in terms of the

latter). [Mancosu, 2008b, p. 192-193]

Now, if Kitcher’s model has been regarded as an overarching model for

explanation in mathematics and science (and it has been considered by the

author himself as such), it is therefore important to present it and discuss its

applicability in the context of MEPP. This is why in the final part of the dis-

sertation (chapter 7) I will come back to this account and I will assess it on a

case of MEPP coming from the scientific practice. Now, the reader might be

surprised for this choice, and may ask: ‘Why don’t you give that assessment

here?’ I have a very natural reason for my choice. To test Kitcher’s model

later in the dissertation, and not in this chapter, is perfectly consonant with

the general strategy that I have adopted for my investigation. In chapter 7 I

will point to the difficulties that this and other accounts have in capturing a

MEPP which is recognized as such in scientific practice. And from that anal-

ysis I will propose a diagnosis which will lead me to a change of perspective

toward MEPP (chapter 8).

Unfortunately, the complex structure of Kitcher’s unification model of

explanation makes very difficult to illustrate the model without giving a de-

tailed presentation of it. And I have to admit that I have not succeeded in

such a task of reduction. This is why this chapter has filled more space than
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the previous ones, thus testing the patience of the reader. On the other hand,

I hope to have persuaded the reader that the space devoted to unification

and the detailed presentation of Kitcher’s model are needed for the general

topic of the dissertation. And that the content of this long chapter is not

only relevant to MEPP, but it is also necessary to develop my original ideas

in the final part of this study.

In the next chapter I am going to individuate some general features of

the WTA approaches. In this context, Kitcher’s theory (together with its

detailed structure) will be useful because it will help me to individuate these

features.
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Chapter 4

Some features of the

winner-take-all approaches

In this first part I have presented three WTA accounts of explanation

which have been proposed as candidates as to cover MEPP. While the prag-

matic and the unification account have been originally developed as general

accounts of scientific explanation, Mark Steiner’s model has been proposed

by the author in order to explicitly cover MEPP (even if, as we have seen,

Steiner considers that MEPP depend on mathematical explanations within

mathematics).

The fact that these positions are very different among themselves indi-

cates well how the topic of MEPP could be considered from very different

perspectives. Furthermore, as we have seen, every account is inevitably in-

terconnected with other general problematics in philosophy of science and

with the position that those authors endorse toward these problematics. Of

course, this should not come as a surprise. Behind any philosophical account

there are men, and behind those men there are ideas, conceptions or mis-

conceptions about the world. Nevertheless, as I am going to suggest below,

an evaluation of such a close linkage between explanation and general topics

in philosophy of mathematics and of science is useful to provide some broad

characterization of theories of explanation. Moreover, I consider that this
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characterization is not only relevant to the general debate on MEPP, for in-

stance because it would permit to discriminate one account of MEPP from

another (in some specific sense), but it is also worth for the second and the

third part of this dissertation, where I will make use of it. Finally, giving

such a characterization is necessary in order to give a more uniform view

of this part I. For expository’s sake, in giving it I will take three themes as

general guidelines:

• Explanatoriness as a global or local feature

• Tension ontic-epistemic (expressed in the interplay explanation-understanding)

• Relevance relation

4.1 Explanatoriness: global or local feature?

I am not interested in commenting here the difference between a causal

theory of explanation (as Salmon’s, Railton’s or Lewis’) and Kitcher’s uni-

fication approach1. On the other hand, I am going to begin this section by

illustrating one of Kitcher’s motivations for developing his account, and to

do that I will need to follow Kitcher in constrasting causal with non-causal

explanations. This short discussion will substantiate what I have said in the

previous chapter, namely that Kitcher’s account has been proposed by the

author to cover also mathematical explanations. Moreover, it will permit me

to introduce the characterization of the accounts in terms of the global or

local character they attribute to explanatoriness.

For Kitcher, to take the concept of causality as the central concept for a

theory of explanation is not the most fruitfull approach to a good theory of

explanation. This remark is supported by the observation that in domains

such as formal syntax or mathematics we have explanations which are not

1The potential fruitfulness of the unification approach, and the fact that theoretical
explanation should be regarded as primary with respect to causal explanation, is largely
discussed by Kitcher in his [Kitcher, 1985b] and [Kitcher, 1989].

211



causal ([Kitcher, 1985b, p. 637], [Kitcher, 1989, p. 422-428]).

The examples from mathematics reported by Kitcher include (A) the case

of Bolzano’s proof of the intermediate value theorem, (B) the proof of a prop-

erty of finite groups by means of one specific axiomatization of the theory of

finite groups, and (C) Galois’ theory as to explain why, for a specific class

of equations in one variable (linear, quadratic, cubic and quartic), it is pos-

sible to express roots as rational functions of the coefficients. Furthermore,

Kitcher’s claim about the limited scope of a causal theory of explanation

is reinforced by the observation that there exist also physical explanations

which are not causal. Consider, for instance, the following situation: some-

one has knotted a telephone cord around a pair of scissors. We are asked to

free the scissors. The scissors can easily be removed if we make a right twist

at the start. If not, we will not be able solve the trick but we will only obtain

a more complicated configuration. Suppose we do not the right twist at the

start. How do we explain our failure in solving the trick and the tangled

situation we obtained? According to Kitcher, the causal history (i.e. the

sequence of actions actually performed leading to the tangled configuration)

is not sufficient enough for the explanation of the failure [Kitcher, 1989, p.

426]. We need something more, namely, to know the topological features of

the situation that lie behind the causal history and that permit us to say why

our attempt was doomed to failure. More precisely, we can say that we did

not solve the trick because our sequence of actions did not satisfy the topo-

logical condition necessary to solve it2. The moral of the latter example is

that even when we have in our hands the causal history of the phenomenon,

we may not have at disposition what the explanation requires.

These examples of non causal explanations (in mathematics and in physics)

provide, according to Kitcher, sufficient reasons to switch the focus from

causal explanation to “theoretical” explanation, and consider the latter as

primary to the former. As he suggests, while “at each stage [of science] the

2A very similar example, based on geometrical rather than topological considerations,
has been proposed by Peter Lipton [Lipton, 2004, p. 9-10]. I reported this example in the
Introduction to the dissertation.
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explanatory store supplies an ordering for the phenomena and serves as a

basis for the introduction of causal concepts” [Kitcher, 1989, p. 477], the

converse is not true because causal notions are inapplicable in domains such

as mathematics nor even physics3.

For even in areas of investigation where causal concepts do no apply

–such as mathematics– we can make sense of the view that there are

patterns of derivation that can be applied again and again to generate

a variety of conclusions. Moreover, the unification criterion seems

to fit very well with the examples in which explanatory asymmetries

occur in mathematics. [Kitcher, 1989, p. 437]

During his discussion of the mathematical examples (A) (B) (C), Kitcher

suggests that to cases of explanatory irrelevances and asymmetries in em-

pirical science there correspond analog cases of explanatory irrelevances and

asymmetries in mathematics [Kitcher, 1989, p. 424-425]4. Concerning exam-

ple (A), Kitcher observes that Bolzano considers the geometrical proofs of

the intermediate value theorem as not explanatory. In particular, Bolzano

regards these proofs as not explanatory because geometrical facts are foreign

to the analytical domain under investigation5. Therefore, Kitcher observes,

3Even Salmon is conscious of the difficulties faced by his causal-account, for instance
in the case of explanations in quantum mechanics: “ [...] there are fundamental difficulties
in principle in attempting to provide causal explanations in terms of spatiotemporally
continuous causal processes and localized interactions in the quantum domain. I am not
inclined to dispute this claim. Rather, I should say, it appears that causal explanations
of the sort discussed above are adequate and appropriate in many domains of science, but
that other mechanisms –possibly of a radically noncausal sort– operate in the quantum
domain. If that is true, then we need to learn what we can about those mechanisms, so
that we can arrive at a satisfactory characterization of quantum mechanical explanation. It
may turn out that the causal conception of scientific explanation has limited applicability”
[Salmon, 1984b, p. 298].

4I introduced the problem of explanatory irrelevances and the problem of asymmetry
in my presentation of the D-N model, in section 2.2.

5For a discussion of Bolzano’s distinction between explanatory and non-explanatory
proofs see [Kitcher, 1975], [Mancosu, 1996], [Mancosu, 1999] and [Mancosu, 2000].
Bolzano explicitly adopted the Aristotelian distinction between proofs of the fact (hoti
proofs) and proofs of the reasoned fact (dioti proofs). While hoti proofs shows that some-
thing is, only the latters (dioti proofs) give the reason why, the cause (see Aristotle’s
Posterior Analytics I.13).
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Bolzano’s remark about the irrelevance of geometrical considerations to the

proof of the intermediate value theorem can be paralleled with the same con-

siderations that have been raised in the context of the D-N model for the

problem of explanatory irrelevances. In this sense, Bolzano’s case represents

the mathematical analogue to the irrelevance problem for explanation in the

natural sciences. Concerning example (B), Kitcher observes how one partic-

ular axiomatization containing the existence of the inverse and idempotent

elements is preferred by the mathematicians in order to explain why finite

groups satisfy the division property. On the other hand, the reverse deriva-

tion, i.e. the derivation of the existence of an idempotent element and of

inverses from the division property, is regarded as a less natural and non-

explanatory derivation (although formally valid). Example (B) can therefore

be paralleled with the asymmetry problem in empirical science, where only

one direction is considered as explanatory6.

The previous considerations can be summarized as follows. First, for

Kitcher there exist explanations which are not causal. Second, the problems

of asymmetry and irrelevance are not a privilege exclusive of the causal de-

bate on explanation. Explanatory asymmetries and irrelevances arise also in

the domain of mathematics. And Kitcher’s methodological attitude towards

those kinds of problems in mathematics is the same as in empirical science,

namely, to see how they can be solved through the lens of the unification

account.

Contrary to Salmon’s causal approach, then, Kitcher’s theoretical account

is built to capture also mathematical explanations (and causal explanations

as well). This, according to Kitcher, should be considered a remarkable ad-

vantage7. Observe, however, that in considering theoretical explanation as

6To my knowledge, no authors have proposed this analogy, i.e. the analogy between
the problem of asymmetries and irrelevance in science and a same kind of problem in
mathematics, before Kitcher in his [Kitcher, 1989].

7In passing, let me observe that the “greater applicability” of the unification model
(with respect to a causal approach such as Salmon’s) is evident if we consider the different
domains in which the account has been tested. For instance, Maki and Marchionni recently
tested Kitcher’s account on a case of “explanatory unification in the social science”, in the
domain of geographical economics [Maki et al., 2009].
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primary to causal explanation, Kitcher is adopting a perspective on explana-

tion which is based on a completely different paradigm:

Salmon’s approach to explanation is “bottom up”. Explanation con-

sists in identifying causal relations. Causal relations primarily relate

individual events; so the explanation of particular occurrences is fun-

damental. [...] Hempel’s approach to explanation was “top down”.

Explanatory concepts were conceived as prior to causal concepts. But

the D-N model foundered on its liberality. The asymmetries of expla-

nation invited philosophers to make explicit appeal to causal notions.

I claim that a more radical “top down” approach is possible. Begin

from the idea that explanation is directed at an ideal of scientific

understanding. We achieve that ideal by giving a unified, deductive

systematization of our beliefs. Our views about genuine properties

and explanatory dependence emerge from the project of unifying the

regularities we discover in nature. On this approach, theoretical ex-

planation is primary. Causal concepts are derivative from explanatory

concepts. In explaining particular events we answer as many questions

as we can, drawing on our view of the order of natural phenomena. In

some cases, our ideal of understanding may not be completely realiz-

able [Kitcher, 1985b, p. 638-639. My italics]

In Salmon’s account, explanation consists in identifying causal relations.

Therefore we can say that “explanatoriness” is a (local) property possessed

by the local relation between the explanandum and the explanans. On the

other hand, for the unification-believer, “explanatoriness”must be considered

a global property of a theory or framework (of scientific beliefs). This is in line

with Kitcher’s holistic picture of explanation. For instance, we have seen how

Kitcher considered the Newtonian derivation explanatory because it belongs

to E(K), which is the best systematization of our beliefs. According to the

unification view, explanations depend on global constraints (they belong to

E(K)). On this basis, Jaegwon Kim has defined Kitcher and Friedman as

“explanatory internalists”:
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It is useful to view Friedman and Kitcher as explanatory internal-

ists [...] what makes these derivations explanatory, on Friedman’s

and Kitcher’s accounts, is their relationship to other items within our

epistemic system, not some objective facts about external events or

phenomena. On Kitcher’s account, for example, what makes a given

D-N argument explanatory is the fact that it is a member of a class

of arguments (a “systematization”, as Kitcher calls it, of our belief

system) which best unifies our belief system. And the measure of de-

grees of unification depends solely on factors internal to the epistemic

system, such as the number of argument patterns required to generate

the given class of arguments, the “stringency” of the patterns, etc., not

on any objective relations holding for events or phenomena involved

in the putative explanations. [Kim, 1994, p. 63-64]8

In Mark Steiner we are faced with an opposite situation. In his model,

in fact, the “explanatoriness” property is a local feature, and precisely a

local feature of the proof. In other words: while in Kitcher the fact that

mathematics be explanatory in the description of a physical phenomenon

depends from the fact that the explanation (the derivation) be part “in a

certain way” of a whole theory or system of beliefs, Steiner’s idea is that

in every particular mathematical explanation of a physical fact we have a

local property which provides explanatoriness (in such an explanation we

can separate the mathematical part from the physical one and we identify a

specific local characteristic, called characterizing property, which provides us

with explanatoriness). As put forward by Mancosu:

this [the contraposition between local and global] captures well the dif-

ference between the two major accounts of mathematical explanation

available at the moment, those of Steiner and Kitcher. [Mancosu, 2008b,

p. 195]

8Kim observes that “any unification approach to explanation will be holistic, although
this isn’t true of all internalist theories (compare, e.g., Hempel’s covering-law theory)”
[Kim, 1994, p. 64, footnote 22]. This is because any explanation considered under a unifi-
cation perspective (along the lines of Kitcher or Friedman’s views) would be characterized
not locally, but in terms of facts about our whole belief system.

216



Finally, as it emerges from the detailed discussion we made for the prag-

matic account, Van Fraassen’s theory does not characterize “explanatoriness”

in any (local or global) sense. This simply because in his view explanatoriness

can be a local property, but it can be a global property as well. For instance,

if we consider the relevance relation as that of causation (something that Van

Fraassen accepts9), explanatoriness will be a local property of a state of af-

fairs. On the other hand, if we fix the relevance relance as that of intentional

relevance, as it is the case in his example of the tower and the shadow, we

must consider that explanatoriness is a global property of a whole system of

belief, since it is this system of beliefs which fixes the relevance relation. We

can thus say that this theory is neutral towards the view of explanatoriness

as a global or local feature. Nevertheless, following Van Fraassen in his“prag-

matic” characterization of explanation (context-dependence, etc.), it is easy

to understand why he claims that explanation (and not explanatoriness) is

not a global affair but a local one [Van Fraassen, 1980, p. 109-110].

4.2 Ontic versus epistemic

To every account on explanation there corresponds a tension towards the

‘epistemic’ or the ‘ontic’ côté10. I use here the terms epistemic and ontic with

the following semantic values: I call ontic an account of explanation which is

based on a relation that is characterized independently from the categories

linked with the subject who knowns (the understanding is an example of

such categories); I call epistemic an account which uses a relation which is

defined through categories, such as the understanding, which are linked to

the subject11.

9Although, of course, he regards a caual relation as no more than ‘what because must
denote’ [Van Fraassen, 1980, p. 155].

10The importance of this tension as a guideline to ‘read’ the recent history of philo-
sophical models of explanation has been pointed out by Paolo Mancosu in his lecture
“Understanding, Explanation and Unification”, during the workshop Mathematical Under-
standing (Paris, June 2008).

11The semantic values of those terms change with respect to the authors who use them.
In his [Salmon, 1984b], Wesley Salmon refers to the “epistemic conception of scientific
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While authors as Toulmin, Scriven or Hanson have made an explicict

claim to the notion of understanding as a desideratum of their model, other

authors as Hempel did not consider understanding as central or relevant to

the discussion about explanation and offered only a precise (formal) defini-

tion of the nature of the explanation relation. Restricting my analysis to

the authors considered, we have already seen how Friedman tried to solve

this tension by linking an objective definition of explanation with that of

understanding (in particular by offering a theory of explanation that would

able to incorporate a notion of understanding in science). While Kitcher

followed the same way12, in Van Fraassen we have that the focus is much

more balanced on the epistemic side. According to Van Fraassen, there is no

specific characteristic of an explanation which gives us explanatoriness13, but

explanatoriness is given within a specific context by the interests of a ques-

tioner. Explanation are answers to why questions, and the theory addresses

the problem of how these answers are formulated (theory of why questions)

and when they are legitimate (evaluation). The fact that the answer be legit-

imate depends on the relevance relation, and the latter is (roughly speaking)

fixed by the questioner and his interests.

Mark Steiner is more focused on the ontic perspective and he does not re-

fer to the notion of understanding or to any epistemic value in his explanatory

theory. In his theory of MEPP a particular objective feature (“characteriz-

explanation” as that view which regards explanations as arguments, while the “ontic con-
ception” is considered as the conception which“sees explanations as exhibitions of the ways
in which what is to be explained fits into natural patterns or regularities” [Salmon, 1984b,
p. 293]. In this classification, Hempel and Van Fraassen both belong to the epistemic
conception of explanation, while the second is advocated by authors as Michael Scriven
and Salmon himself.

12For instance, he writes: “Understanding the phenomena is not simply a matter of
reducing the ‘fundamental incomprehensibilitie’ but of seeing connections, common pat-
terns, in what initially appeared to be different situations. Here the switch in conception
from premise-conclusion pairs to derivations proves vital. Science advances our under-
standing of nature by showing us how to derive descriptions of many phenomena, using
the same patterns of derivation again and again, and, in demonstrating this, it teaches
us how to reduce the number of types of facts we have to accept as ultimate (or brute)”
[Kitcher, 1989, p. 432].

13This point is stressed by Salmon in the passage I quoted at the end of subsection 3.1.1
[Salmon, 1989, p. 131].
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ing property”) is the kind of (objective and epistemic-neutral) relation that

provides us with explanatoriness. Therefore we can regard Steiner’s account

as an ontic account of explanation.

It should not come as a surprise that, as pointed out by Peter Railton,

different views in explanations correspond to different metaphysical views:

Except in a few polemical places, theories of explanation were de-

scribed by their formal features – “covering law”, “why-questions”,

“speech-act”, “statistical relevance” – and did not come prefixed with

such metaphysical codes as“empiricist”, “pragmatist”, or“realist”. Yet

at the table sat empiricists, pragmatists, and realists. [Railton, 1989,

p. 220]

Thus, for instance, Salmon’s causal account corresponds to a strong ver-

sion of scientific realism. Concerning the authors discussed in this first part of

the dissertation, Mark Steiner’s ontic perpective on explanation is connected

to his realist position in philosophy of mathematics, while Van Fraassen’s

pragmatic model mirrors his anti-realist conception in science14. Baker, as

we have seen, defends his platonist position in philosophy of mathematics by

appealing to the role that MEPP have in the enhanced indispensability ar-

gument. Although Kitcher seems to accept a kind of methodological realism,

without endorsing any particular metaphysical position15, his and Friedman’s

unification proposals are congenial to scientific realism. In particular, the fact

that Friedman and Kitcher’s positions are more inclined towards scientific re-

alism has been observed by Peter Railton in his [Railton, 1989, p. 227, 230].

The point is that the unification approach gives a role to the postulation

of structures and mechanisms (different phenomena are traced to a common

structural basis), and therefore it involves commitment to the existence of

the reducing entities or properties. For instance, suppose we have a physical

model of the atom which unifies diverse phenomena (emission and absorption

14Nevertheless, as we have observed in chapter 2, his model is not incompatible with
realism.

15See [Kitcher, 1989, p. 500].
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spectra, conductivity of metals, etc.) into a common structural (or causal)

basis (the model of the atom). This basis is characterized theoretically, then

if we were to eliminate the commitment to the reducing entities (atoms,

electrons, etc.), we would lose the physical model by means of which the

unification is achieved. In Friedman’s book Foundations of Space-Time The-

ories: Relativistic Physics and Philosophy of Science [Friedman, 1983], this

commitment is explicitly stated. Here the author claims that the principle

of unifying power provides a defense for a realist interpretation of theoretical

structures. In particular, we should attribute a realist interpretation only to

all the theoretical elements which have uniyfing power (we shall call those

elements “good” theoretical elements, while the theoretical elements without

unifying power, such as Newton’s absolute space, are called “bad” theoretical

elements), because in such cases the theory has a higher degree of confirma-

tion under a realist interpretation than under a non realist one16. To quote

a long but very informative passage of Friedman’s text:

More generally, we can put the matter as follows. Physical theories

postulate a structure A = 〈A,R1, ..., Rn〉 [where A is an open region of

space-time and R1, ..., Rn are observational properties] that is intended

to be taken literally, this is supposed to have physical reality. Physical

theories also typically invoke various representative elements – pieces

of mathematical structure that are not intended to be taken literally.

In this latter category we find such things as choices of coordinates,

units, and so on; in our present context, we are always dealing with

a representation φ : A → R4. Our problem is to find a rationale for

this practice. On what basis do we assign some pieces of structure

to the “world” of physical reality A and other pieces to the “world”

16See [Hiskes, 1986] for a detailed review of Friedman’s book. She underlines one im-
portant aspect of Friedman’s discussion: “unification between theories limits one’s choice
between alternative theoretical models of a given observational structure, thus providing a
defense against the ‘underdetermination’ of all theory. For example, there may exist quite
different models of space-time geometry, both of which embed all possible data, but only
one of these can be unified with a given theory of kinematics. As Friedman correctly points
out, taken to its extreme, this problem is just the problem of alternative total theories of
the world, and it extends to observational descriptions as well” [Hiskes, 1986, p. 123].

220



of mathematical representation R4? My answer is that this practice

is based on the unifying power of theoretical structure. A particular

piece of structure postulated by an initial theory of the form

∃φ ∈ Φ : A → R4

(where Φ is a class of mappings) has unifying power in the context of

a second theory of the form

∃ψ ∈ Ψ : A → R4

(where Ψ is a second class of mappings) just in case it facilitates the

inference to

∃χ ∈ Φ ∩Ψ : A → R4.

If this inference goes through even without the structure in question,

as in the example of absolute rest and gravitational theory, it has no

unifying power and can be safely dropped from A. If, on the other

hand, the structure in question plays a necessary role in many such

inferences, we have no choice but to take it literally, to assign it a

rightful place in the “world” of physical reality A. For otherwise our

total theory of A is much less well-confirmed. [Friedman, 1983, p. 250]

Friedman’s “inference to the unified explanation” (i.e. the use of unifying

power as a criterion for a realist interpretation of a theoretical structure)

has been strongly criticized by Margaret Morrison in her [Morrison, 1990]17.

Among the main objections to Friedman, Morrison raised the folowing point:

while Friedman’s unification is constructed as a context-dependent process

(here context is used in a wider way than in Van Fraassen; it refers to

Kitcher’s set K of accepted belief at a particular time), it cannot moti-

vate realism because this context-dependence provides no ontological stabil-

ity [Morrison, 1990, p. 327-328].

17Morrison’s paper, which is basically a previous version of chapter 3 of [Morrison, 2000],
contains a short and clear illustration of Friedman’s characterization of the relationship
between observational and theoretical structure as that of submodel to model.
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The foregoing remarks show very well how the problematics of explana-

tion could not be disentangled from the metaphysical arena and might play

a discriminant role in general disputes in philosophy of science and mathe-

matics. In 1989, more than ten years before Mark Colyvan’s book The Indis-

pensability of Mathematics [Colyvan, 2001] and the ‘advent’ of the enhanced

indispensability argument, in his study “Explanation and Metaphysical Con-

troversy” [Railton, 1989] Peter Railton observed::

Interestingly, within that dispute [the dispute between realists and

irrealists] the concept of explanation proved to be indespensable: one

side often claimed that a realist interpretation of scientific theory was

justified by inference to the best explanation; the other side often

responded that the realist’s posits could do no explanatory work, since

they yielded no empirical predictions beyond those already afforded

by the observational reduction of the theory. [Railton, 1989, p. 221;

my italics]

This is evident if we consider the key role that is given to the notion

of explanation in books which deal with specific subjects of philosophy of

mathematics, for instance Colyvan’s book. Moreover, in the previous chap-

ters I have shown how the role of explanation was central in Baker’s and

Steiner’s realist claims, although in a different flavour18. In the context of

these debates between the realists and the anti-realists (in general philosophy

of science or in philosophy of mathematics), the characterization in terms of

the epistemic/ontic distinction as that introduced here might be useful to dis-

entangle the various positions and might contribute to make the ontological

debate more transparent19.

18Alan Baker justifies the existence of numbers thorugh MEPP and IBE’s criterion
(in the enhanced indispensability argument). On the other hand, although endorsing
realism towards mathematical entities, Mark Steiner denies the possibility to use MEPP
in inferring the existence of numbers.

19I leave this task here as an aside, and in this dissertation I will not use the on-
tic/epistemic characterization of the accounts in the context of debates between realists
and anti-realists.
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4.3 Relevance relation

The tension ontic-epistemic is linked to a very particular feature that we

can individuate in the WTA view: a relevance relation. In this section I want

to suggest that the three WTA models can be ‘read’ in terms of this rele-

vance relation, and this relevance relation can be objective (as for Kitcher’s

and Steiner’s model) or not (as in the case of Van Fraassen’s model).

Let me reconsider here shortly Van Fraassen’s definition of relevance re-

lation. For Van Fraassen a relevance relation R is the “respect-in-which a

reason is requested”. We saw that in his theory of why-questions an explana-

tion takes the form “Because A”, where the proposition A bears relation R to

the couple 〈Pk, X〉. Now, even if Van Fraassen did not offer any constraint

or formal characterization of relevance requirement on R, I think that we

can read Steiner’s and Kitcher’s model in terms of Van Fraassen’s objective

relevance relation20.

In Steiner’s account of explanation in mathematics the characterizing

property is exactly what permits us to fix an objective relevance relation

between a mathematical entity (mentioned in a proof) and a theorem (or

a class of theorem –take in mind deformability!)21. To switch to Steiner’s

account of MEPP, let’s consider A as a proposition which has mathematical

content (for instance, Euler’s theorem), while the topic Pk as a proposition

expressing the phenomenon to be explained (for instance, the fact that when

a body is rotated there is an axis which passes through the center of the

body and which does not move). As I have suggested in a footnote of section

2.4, we might consider that Steiner’s criterion CMEPP can be used to model

a particular relevance relation Rst that A bears to the couple 〈Pk, X〉. This

relation would be objective because dependent on Steiner’s objective charac-

20We can also read Salmon in Van Fraassen’s terms, as Kitcher does: R is a relation
of particular causal relevance. Kitcher calls “causal why-questions” those particular why-
questions [Kitcher, 1989, p. 420-421]. In what follows I am not going to offer a“paraphrase”
of Steiner’s and Kitcher’s ideas in the form of relevance relation. Rather, I consider that
such a task might be undertaken.

21In passing, let me observe that Steiner’s account of explanation in mathematics has
been formulated in terms of why-questions by Weber [Weber et al., 2002, p. 300].
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terizing property. Moreover, once R is adopted, the answer ‘Because A’ will

be (of course!) relevant to the topic Pk with respect to its alternatives and

will favor the topic with respect to the other members of the contrast class

X. In Kitcher’s case, it is the author himself who suggests a sketch of how

his account can be read in terms of Van Fraassen’s pragmatic account and a

relevance relation22:

An ideal why-question acceptable relative to K is a triple 〈P,X,R〉
where P is expressed by some member of K, X is an admissible

contrast-class, and R obtains between a sequence of propositions A

and 〈P,X〉 just in case A is expressed by a derivation in E(K) whose

conclusion expresses the conjunction of P and the negations of the

remaining members of X. An actual why-question acceptable relative

to K is a triple 〈P,X,R〉 where P,X must satisfy the same conditions

as before and R holds between A and 〈P,X〉 just in case A is a subse-

quence of a sequence of propositions expressed by a derivation in E(K)

whose conclusion expresses the conjunction of P and the negations of

the remaining members of X [Kitcher, 1989, p. 435]

All the three accounts illustrated in this part share then a same feature:

they all define explanation in terms of a particular kind of logical relevance

relation between the explanans and the explanandum (at least under the

reading of this section). In Kitcher and Steiner the relation is objective

and it is provided, while in Van Fraassen this relation remains free and Van

Fraassen excludes the possibility for such a relation being objective.

4.4 Conclusion

As we have seen through the three guidelines proposed above (explanatori-

ness as a global or local feature, tension ontic-epistemic, relevance relation),

22See [Kitcher, 1985b, p. 633-634] and [Kitcher, 1989, p. 435-436] on the possibility of
integrating the unification account with a pragmatic approach. Of course, Van Fraassen
would refuse such integration on the basis that, for him, there no exists a criterion for
constraining the relevance relaiton.
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the three accounts I have examined share some general features but differ

with respect to other aspects.

These authors adopted different methodologies of research to build their

models, and these methodological choices are inevitably connected with some

metaphysical convinction. This makes extremely difficult to analyze the mod-

els under an uniform framework (as, for instance, this dissertation). There-

fore, by identifying three general guidelines, I have tried to build an instru-

ment to constrast a particular account of explanation with another (at least

with respect to some aspects) and disentangle these models (together with

the respective positions of the authors).

There are, of course, other aspects which could have been picked out from

the models and which might have been considered. For instance, although

I have based my choice on the exigence of the strategy of this dissertation,

another aspect concerns the role that the notion of ‘generality’ play in such

accounts. Let me shortly consider how this aspect can be appreciated in

Kitcher’s model, and how it is connected to the global characterization I of-

fered in section 4.123.

In his book The Nature of Mathematical Knowledge [Kitcher, 1984], Kitcher

considers the development of mathematics as rational and offers an account of

the growth of mathematics through the rational steps which characterize its

practice. The question is: if we assume that mathematics develops according

to some rational criteria, what are the patterns of change which are typical of

mathematics? This question, or better an answer to this question, might have

strong consequences for any model of explanation which refers to the realm

of mathematics. In his discussion, Kitcher identifies the role of generalization

as of primary importance in mathematical explanation. In particular, what

23The choice to focus on the role of generality in Kitcher is motivated by the fact that the
role of ‘generality’ (and generalizability) in Steiner’s account has been already discussed
in the relative chapter. Moreover, in Steiner the role of generality concerns his account of
mathematical explanation within mathematics. In Van Fraassen the notion of ‘generality’
seems to play no role (as far as I see), and no such analysis has been proposed for his
account (at least to my knowledge). An analysis of the role of generality in connection
with explanation in Kitcher’s account as applied to explanations in mathematics is offered
in [Mancosu, 2008b].
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he calls “significant generalizations” are a kind of pattern of mathematical

change which provide explanatory power (other patterns of change, and thus

good candidates for offering explanation in mathematics, are “rigorization”

and “systematization”). Referring to his mathematical examples, Kitcher

remarks that “the preferred derivation can be generalized to achieve more

wide-ranging results [...] the explanatory derivation is similar to derivations

we could provide for a more general result; the nonexplanatory derivation

cannot be generalized, it applies only to the local case” [Kitcher, 1989, p.

425]. It is easy to see here how the role of generality in Kitcher is strictly

connected to what I said in section 4.1, namely that in Kitcher’s model ex-

planatoriness is a global feature of a framework. Recall that the intuitive

idea behind unification is that E(K) is the set of derivations that makes the

best trade-off between minimizing the number of patterns of derivation em-

ployed and maximizing the number of conclusions generated (the ‘unification

criterion’). Now, we can say that explanatoriness is a (global) property of

such a framework E(K). Therefore, to see how the notion of explanatoriness

(as a global feature of the framework) and generalizability are connected in

Kitcher’s model, it is sufficient to observe that in E(K) we find those deriva-

tions which maximize the number of conclusions, namely the (explanatory)

derivations which can be generalized. On this account, a derivation which

cannot be generalized does not belong to E(K) and is therefore not explana-

tory, i.e. it does not contributes to the explanatoriness of E(K)24.

In giving the three guidelines, I emphasized the fact that the debate

around scientific explanation has been a bridge to the arena realism-antirealism

24Kitcher’s claim that generality provides explanatory power is criticized by Margaret
Morrison. Although, as we have seen, Morrison does not agree with Kitcher on the link-
age explanation-unification, she looks at generality as the “basis of the unifying power”
[Morrison, 2002, p. 348]. However, for her this generality reduces explanatory power (while
in Kitcher’s view generality provides explanatory power). In the particular case of Maxwell
unification, the generality of the framework is the basis which permits the unification
through the Lagrangian approach [Morrison, 2002]. But, as we have seen in the previous
chapter, Morrison points out that in this process “explanatory” details are lost: “[...] the
generality provided by such mathematical structures [the mathematical structures through
which the unification is achieved] can actually detract from rather than enhance the the-
ory’s overall explanatory power” [Morrison, 2000, p. 31].
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in science, and that the philosophy of mathematics has inherited the same

mechanism. The fact that MEPP are now seen to play a key role in the

ontological debate between nominalists and platonists is something that I

have already mentioned in chapter 2, where in footnote I gave a sketch of the

Melya-Colyvan debate. On the other hand, we have seen in this chapter that

it is not only the notion of explanation that plays a role in our metaphysical

convictions, but the converse is also true (i.e. that our conceptions of the

world do play a role in our conception of explanation). As Peter Railton has

pointed out:

To say that one’s background picture of the world is involved in one’s

conception of explanation is to suggest that one’s intuitions about par-

ticular kinds or instances of purported explanation may not constitute

a body of neutral data for testing theories of explanation. [...] Equally,

it is to suggest that there may not be a unitary, substantial concept

of explanation to analyze, or, more accurately, that the concept of

explanation is rather thin, too slight, perhaps, to be asked to resolve

deep philosophical disputes [Railton, 1989, p. 224].

Now, as Peter Railton suggests, there may not be a unitary, substantial

concept of explanation to analyze. This is perfectly in line with the idea that

stands behind the pragmatic account. Nevertheless, let me add to Railton’s

remark that there may not be a single model to capture this not unitary con-

cept of explanation. Now, bearing these two remarks in mind, namely that

there may not be a single model and explanations may be heterogeneous, we

can ask if there is an approach to MEPP which goes in this direction. An

answer for this is ‘Yes, there is such a perspective on MEPP’, and it is to

this perspective that I am going to turn my attention in part II.

In the next part, I am going to present a view on MEPP which is very

different from the WTA view. The next authors consider there are different

kinds of MEPP but they do not think that there is a single model to which

the notion of explanation can be reduced. These two ingredients characterize

their ‘pluralism’ toward MEPP. Now, I think that it is necessary to add here
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a remark concerning the contrast WTA/pluralism. More particularly, I want

to make plain that there is an essential difference between the pluralist view

I am going to present and the WTA view adopted by the approaches that I

have analyzed in this first part.

Consider Kitcher’s and Steiner’s models. Kitcher proposes an holistic pic-

ture of explanation in which explanations (among them MEPP) are deriva-

tions belonging to the explanatory store E(K). Steiner gives a single model

for MEPP and looks at MEPP as those explanations which are in tune with

his criterion CMEPP . It is easy to see that these authors are not pluralist

toward MEPP. With Van Fraassen things are more subtle. In fact, as we

have seen, Van Fraassen accept that there are different kinds of explanation

(and then different kinds of MEPP, if we consider the extension of the model

to MEPP). This is clear if we consider that he leaves open his relevance re-

lation R. On the other hand, and here is the aspect which makes his model

not pluralist, Van Fraassen regards an explanation as an answer to a why-

question and therefore he does offer a single model to capture the notion of

explanation25.

Finally, according to the fresh perspective adopted by the authors of the

next part, it is more favourable a “bottom-up” methodology in the study of

MEPP, i.e. a methodology according which the philosophical investigation

of MEPP should start from the observation of scientific and mathematical

practice26. As we are going to see, for these philosophers Hempel’s dictum

25Moreover, the model, as emerged from Sandborg’s criticism (subsection 2.3.3), does
not capture some explanations (in that case mathematical explanations in mathematics)
which do not come under the form of an answer to a why-question. In the final part of the
dissertation, in chapter 7, I will offer an example which shows that there are also MEPP
which do not come under the form of answers to why-questions. Here, again, I must pray
the patience of the reader.

26Paolo Mancosu has stressed the importance of such a type of methodological approach
in the context of mathematical explanation: “Previous theories of mathematical explana-
tion proceeded top-down, that is by first providing a general model without much concern
for describing the phenomenology from mathematical practice that the theory should ac-
count for. Recent work has shown that it might be more fruitful to proceed bottom-up,
that is by first providing a good sample of case studies before proposing a single encom-
passing model of mathematical explanation” [Mancosu, 2008c]. The same idea, namely to
focus on the mathematical practice by get our hands dirty with the details of mathematics
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“rules as limits” disappears into the jungle of explanation.

and then proceede in a “bottom up” direction, is shared by Tappenden [Tappenden, 2005,
p. 187-188]. Mancosu and Tappenden’s considerations about the importance of such a
methodological approach are reflected, as we have seen in the previous chapter, in their
criticisms to Kitcher’s model. Moreover, let me observe that the way in which I am using
here “bottom-up approach to explanation” and “top-down approach to explanation” is dif-
ferent from the way Kitcher used the same expression in his passage from [Kitcher, 1985b]
(I have quoted the passage in section 4.1). I use bottom-up/top-down with the (method-
ological) connotation proposed by Mancosu.
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Part II

The pluralist way to MEPP
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The prospect of any one of these models being developed to cover all good sci-

entific explanations (let alone good explanations in general) are dim. Perhaps

we sould opt for pluralism. Perhaps there are several types of explanation, each

with its appropriate model.

W. H. Newton-Smith, A Companion to the Philosophy of Science, p. 132.

In this part II, I will illustrate two positions which diverge from the three

WTA views presented in the first part and which offer a very different per-

spective on MEPP. The defenders of these views do not propose a solution to

the whole problem of MEPP, i.e. they do not propose a single encompassing

model of MEPP as Steiner, Kitcher and Van Fraassen did, but focus on spe-

cific kinds of explanations and try to tell only part of the story about MEPP.

The views I am going to illustrate are that of Christopher Pincock, who at-

tempts to accommodate the explanatory role of mathematics in his mapping

account of the application of mathematics, and that of Robert Batterman,

who focuses on a particular form of scientific reasoning (“asymptotic reason-

ing”) which he considers as central to a particular form of MEPP. To discuss

these positions will highlight the relation mathematical modelling and ideal-

ization have with explanation, a connection which has received much interest

among various philosophers of science.

The main aim of this part is thus to present some positions on MEPP

which explore only fragments of the problem of explanation, thus contribut-

ing to the idea that does not exist a WTA approach to MEPP but such

explanations are heterogeneous and cannot be captured by a global model.

Putting to one side the embarrassment for the philosophy of science (why are

we unable to find a general model? Is our investigation for a global model

such a visionary search?), to endorse the idea of ‘pluralism in explanation’

(there are several kinds of explanation, and these explanations cannot be

captured by a single model) has strong consequences in terms of what I said

in the previous chapter27. First, if we are pluralists, there is nothing like

27I use the term ‘pluralism in explanation’ in reference to the passage above, quoted
from Newton-Smith [Newton-Smith, 2000, p. 132]. Henceforth I will refer to it simply as
‘pluralism’, and ‘pluralists’ will be the authors who endorse such a view.

232



a unique objective relevance relation which permits to capture a sense of

explanation efficient enough as to cover any instance of MEPP. This point

seems to confirm a well-known criticism of theories of scientific explanation,

put forward by Paul Feyerabend and concerning the impossibility of having

a general objective account of explanation:

This criterion [the criterion involving “subjective” elements] would

seem to be somewhat arbitrary. It is easily seen, however, that it

cannot be replaced by a less arbitrary and more “objective” criterion.

What would such an objective criterion be? It would be a criterion

which is either based upon behavior that is not connected with any the-

oretical element –and this is impossible– or it would be behavior that is

tied with an irrefutable and firmly established theory –which is equally

impossible. We have to conclude, therefore, that a formal and “objec-

tive” account of explanation cannot be given28 [Feyerabend, 1962, p.

95]

Second, the following problem arises: if we accept that does not exist a

general theory of MEPP, how can we characterize an explanation with respect

to another explanation, and more precisely how do we compare explanation

E1 of P1 from explanation E2 of P2, or even explanation E1 of P1 from ex-

planation E2 of the same physical fact P1? Let me call the latter problem

the incommensurability-problem of explanation. Is there a way to compare

two MEPP (for instance, in terms of their explanatory power) if we have at

our disposal such a jungle of perspectives on MEPP?

A further and general remark is important for what follows. Robert Bat-

terman has rightly emphasized as most (if not all) of the recent investigation

28Observe that Feyerabend’s rejection of objectivity does not entail pluralism. A plural-
ist does not exclude that there might be different accounts of MEPP based on a “objective
criterion”. For instance, objectivity expressed by account A captures explanation EA,
while account B is based on a different objective relation which captures explanation EB ,
and so on. However, a pluralist would not accept a unique objective criterion for ex-
planation. This is the point I want to stress here: to accept pluralism is to reject the
existence of a unique objective account of MEPP. A conclusion which coincides with that
of Feyerabend.
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of the notion of MEPP originated in the Indispensability Argument debate

[Batterman, 2010]. I have sketched the general lines of this debate in my dis-

cussion of Baker’s test case (see especially footnote 1 of section 2.1). In order

to show that mathematical entities play (or do not play) an indispensable

explanatory role in our best science, the interest of much philosophers was

directed to cases of MEPP which involved properties of mathematical entities

(this was the case, for instance, of Steiner and Baker29). The negative effect

of that was that other cases of MEPP which do not make reference to math-

ematical entities were left outside. For instance, as we will see, Pincock is

interested in “explanation that appeal primarily to formal relational features

of a physical system” [Pincock, 2007a, p. 257]. On the other hand, Batter-

man is concerned with“explanations which involve mathematical operations”,

rather than mathematical entities or properties of entities [Batterman, 2010,

p. 5 ].

Finally, it should be noted that Pincock’s and Batterman’s thesis are very

recent and they have not been subjected to an intensive criticism yet. Even

if we do not dispose of this criticism, however, I will try to put on the ta-

ble some important points of the discussion which took place around these

positions on MEPP. There is no doubt that the perspectives contained in

this second part represent fresh and stimulating advancements in the study

of MEPP.

Before presenting the accounts, let me add two general observations. The

first concerns the methodology adopted by pluralists. The second concerns

the consequences that the adoption of pluralism has (or has not) at the level

of the ontic/epistemic character of the resulting model. To put the latter

point differently: once we adopt pluralism, are we necessarily committed to

an ontic (or epistemic) model of explanation?

29Baker focused on the property of primeness, while Steiner focused on the property
(the ‘characterizing property’) possessed by particular mathematical objects.
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Pluralism and methodology

If we accept that pluralism is the way, we are well-suited to fix a method-

ological question. In chapter 4 I made a distinction between top-down

and bottom up methodological approaches to MEPP. A top-down strategy

amounts to providing a general encompassing model and then test the model

on specific case studies from scientific practice. On the contrary, to pro-

ceed bottom-up is to begin the analysis by taking into consideration some

cases of MEPP coming from scientific practice and then try to propose a

model or some philosophical considerations. We have already seen how Man-

cosu and Tappenden, in their analysis of Kitcher’s unification model, have

suggested that the bottom-up procedure might constitute a more fruitful

strategy ([Tappenden, 2005, p. 187], [Mancosu, 2008c]). Let me now provide

a linkage betwen this methodological point and the pluralist view on MEPP.

If we follow a bottom-up strategy, we do not necessarily have to endorse

pluralism. For instance, we might start from a specific set of cases of MEPP

as recognized in scientific practice and then search for a single model. On the

other hand, if we are pluralist, we are necessarily committed to a bottom-

up methodology. This is quite natural, and it is evident if we consider the

methodology of the pluralist authors I am going to present in the following

two chapters. They always start their analysis from a singular case-study

coming from scientific practice, and next they propose their idea of what

‘species’ of MEPP we are confronted with by looking at the specific test-case

itself.

Pluralism and ontic/epistemic commitment

In chapter 4 I introduced a characterization of the accounts in terms of

the ontic/epistemic distinction. I defined an account of explanation as on-

tic when it is based on a relation that is characterized independently from

the categories linked with the subject who knows (the understanding is an

example of such categories). On the other hand, I defined as epistemic an
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account which uses a relation which is defined through categories, such as

the understanding, which are linked to the subject. We have seen how the

adoption of a WTA view on explanation was neutral on the ontic/epistemic

character that such a theory of explanation should have, in the sense that a

WTA approach might be ontic or epistemic as well. While Van Fraassen’s

model was much more balanced on the epistemic side, and Steiner on the

ontic one, Kitcher’s model (as Friedman’s) stood between the ontic and the

epistemic30. It is then interesting to see whether to adopt a pluralist view

on explanation might have consequences on the level of ontic/epistemic char-

acter that the resulting theory of explanation has. In order to investigate

this point, it is sufficient to anticipate here some basic features of the models

which will be illustrated in detail in the following two chapters.

Batteman’s account is based on the idea that a particular kind of ‘reason-

ing’ (asymptotic reasoning) does characterize a particular kind of explana-

tion (asymptotic explanation). As a consequence, his account must be seen

as epistemic, because the particular way of reasoning he refers to is depen-

dent on the subject who is doing the explanation. On the other hand, the

account proposed by Christopher Pincock is based on the explicit assumption

that there exists a (partial or total) mapping with certain structural proper-

ties between the world and the mathematical domain. The existence of this

mapping (which for Pincock is essential to the MEPP) is independent of us,

and therefore it introduces an ontic component into the model31. However,

as we will see, for Pincock (as for other mapping-account supporters such

30Kitcher and Friedman incorporated in their models a linkage between understand-
ing and explanation, where explanation was objectively characterized, i.e. characterized
independently from the subject doing the explanation, but understanding was not.

31It would be more easy to delineate this ontic component by adopting some terminology
that will be introduced in subsection 5.2. The kinds of statements in which we find
the occurrence of mathematical together with non-mathematical terms are called “mixed
statements”. The mapping accounts of the application of mathematics are external-relation
accounts, i.e. they claim that mixed statements require, for their truth, the existence of an
external relation (the mapping relation between the mathematical domain and the world).
The picture of MEPP proposed by Pincock is based on such external-relation view, and
therefore it incorporates the idea that a mapping between the mathematical domain and
the world does exists independently from us. This represents the ontic component of his
model.
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as Octavio Bueno and Mark Colyvan) mathematical structures play the role

of explanatory devices depending upon the context and our pragmatic mo-

tivations. This is to say that what counts as explanation also depends on

the intentions of the scientists who are doing the explanation in a specific

scientific context. The effect of these latter (pragmatic) considerations is to

create a tension with the ontic component and shift the characterization of

the account towards the epistemic side as well. This is why we can say that,

in this case, the resulting account of MEPP has an ontic as well as an epis-

temic component32.

The moral of the previous paragraph is that pluralism is neutral towards

the ontic/epistemic commitment a theory of MEPP should adopt. More-

over, it is easy to see that the adoption of an epistemic (or ontic) account of

explanation is compatible with the pluralist view. Let me make this claim

more explicit. Suppose we propose an epistemic account of explanation. This

account will use a relation, say Rep, which has been defined by taking into

consideration the epistemic access of the subject to a particular state of af-

fairs (for instance, by taking into consideration the capacity the subject has

to visualize a state of affairs). In that case, the acceptance of pluralism does

not exclude the possibility of having other epistemic or ontic accounts, based

on different relations Rep2, Ront1, ... . On the other hand, suppose now we

propose an ontic account of explanation. This account will be based on a

relation which is characterized independently from the subject, for instance

it will be based on an objective relation Ront such as that offered by Steiner33.

Also in this case we can be pluralists simply by accepting the idea that our

account does capture one particular objective relation Ront, but others objec-

32Observe that to investigate the ontic/epistemic characterization of the accounts does
not mean to investigate the realist/anti-realist ontological commitment of the authors
towards mathematical entities or structures (the latter point will be discussed in subsection
5.2.1). The ontic/epistemic characterization that I am discussing here is something which
concerns the account itself. However we find that, in cases such as that of Van Fraassen’s or
Batterman’s, to the epistemic account proposed there corresponds an anti-realist position
of the author.

33In the previous chapter I have showed how Steiner’s account can be read in terms of
an objective relevance relation.
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tive or epistemic relations (for instance Ront2, Rep1 and so on) are captured by

other accounts of explanation as well. The pluralist option is thus compatible

with ontic as well as with epistemic accounts of MEPP.
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Chapter 5

Christopher Pincock: mapping

accounts and MEPP

We use mathematics to represent and study our world. For instance,

we use a mathematical model to represent a piece of actual world (a tar-

get system) and then we study it mathematically, possibly improving the

mathematical model by making further considerations about the actual sys-

tem under study. However, the effectiveness of this practice leaves us with

a question: How does mathematics apply to the world? This is the famous

“unreasonable effectiveness of mathematics in the natural sciences” to which

Eugene Wigner referred to in his [Wigner, 1960]. One possible line of an-

swering this question is to say that we can account for the applicability of

mathematics to the world by demonstrating the existence of the right kind of

mapping from a mathematical structure to some appropriate physical struc-

ture. The philosophical accounts that try to describe how this mapping works

(i.e. how the structural correspondences between some structural aspects the

target system and the correspective objects in the mathematical structure are

established) have been called “mapping accounts” [Pincock, 2004a].

The motivation which stands behind these studies could be traced back

to some worries which were not adequately faced by the semantic view on

scientific representation. As observed by Christopher Pincock:
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The traditional advocates of the semantic view seemed to downplay

the distinctively mathematical nature of the descriptions that were

used to pick out their models. Here they followed much of the foun-

dational tradition in the philosophy of mathematics in assuming that

first-order logic and set theory were sufficient to characterize scientific

models and their representational relationship to the world [Pincock, 2011c,

p. 328-329]

Right now, two accounts are representative of the mapping view: Christo-

pher Pincock’s approach to the application of mathematics ([Pincock, 2004b]

and [Pincock, 2007a]), and Octavio Bueno and Mark Colyvan’s “inferential

conception of the application of mathematics” [Bueno et al., 2011]1. Their

attempt to account for how the mapping from an actual target system to the

mathematical structure works is particularly interesting for my study. This is

because of the emphasis they put on the explanatory role that mathematics

can have in the process. By not endorsing the idea that to speak of expla-

nation is to speak of causal aspects of the phenomena, these authors leave

room for MEPP.

A fine-grained look at the representational problem (the problem of repre-

senting the world mathematically) permits to single out at least two distinct

questions: the semantic question of whether or not a mathematical represen-

tation is about a target system, and the question of the respects in which

the mathematical representation is an accurate representation of the target

system. Naturally, the latter question has a subquestion concerning the ac-

curacy of the representation in terms of the details of the target system: how

many details do we have to mirror in our mathematical model to improve

the accuracy? If there exists a dependence between explanatoriness and rep-

resentativeness, as some partisans of the mapping accounts seem to suggest,

1Let me add that the mapping accounts can be traced back to the ‘projectivist’ fam-
ily in theory of representation, and in particular to one of its origins in the works on
representational measurement theory by Suppes and collaborators ([Krantz et al., 1971],
[Suppes et al., 1989], [Lute et al., 1990]), which focuses on structural similarities between
empirical and mathematical systems. The approach here, though, is quite more general
for the similarity is not restricted to empirical comparison systems as it is the case in
measurement theories.
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the latter question is relevant to our investigation.

In the first section of this chapter, I am going to present a famous prob-

lem, the Königsberg bridges problem, whose solution was found by Euler in

1735. In particular, I will show how a solution to this problem can be given in

the modern language of graph theory. Next, I will present Pincock’s account

of abstract explanations in the context of his mapping account view, as of-

fered in his papers [Pincock, 2004b] and [Pincock, 2007a]. As we are going to

see, in order to illustrate his idea of abstract explanations, Pincock discusses

the modern solution to the problem originally solved by Euler. Section 5.3

will contain a discussion of how mapping accounts accommmodate the role of

idealizations and how the idea that idealizations can play explanatory roles

can be defended. Finally, in the last section of the chapter (section 5.4), I

will address the following question: Is representation a necessary condition

for explanation?

Before starting with Euler and the Königsberg bridges let me observe

that, although Bueno and Colyvan’s inferential conception of the application

of mathematics is seen by the authors as an attempt to improve Pincock’s

model of application of mathematics [Bueno et al., 2011, p. 371 endnote 10],

I will not consider their position in my analysis. This choice is motivated

by the fact that Bueno and Colyvan do not offer a precise characteriza-

tion of what they consider as “explanation”, but only a general and intuitive

idea of how MEPP can be accommodated within their model of applica-

tion [Bueno et al., 2011, p. 353]. On the other hand, Pincock’s treatment

of explanation is explicitly aimed to capture a particular instance of MEPP

(abstract explanation) and thus it offers a more precise and workable notion.

5.1 A walk across the seven bridges of Königs-

berg. Does mathematics help?

Let’s begin with a famous recreational problem concerning the seven

bridges of Königsberg. In the 18th century the city of Königsberg consisted
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Figure 5.1: The seven bridges’ diagram as appeared in Euler’s 1736 paper.

of four land areas separated by branches of the river Pregel over which there

were seven bridges2. The problem was the following: is it possible for some-

body to make a complete tour of the town crossing each of the seven bridges

exactly once and returning to the starting point?

In 1727, Leonhard Euler began working at the Academy of Sciences in

Saint Petersburg. He presented a paper to his colleagues on 26 August 1735

on the solution of “a problem relating to the geometry of position”. The

problem to which Euler referred to was the Königsberg bridges problem3. He

proved that it was not possible to plan a route that would cross each of the

seven bridges of Königsberg exactly once, whether or not you ended up in

the same place as you began4.

2Königsberg, along with the rest of northern East Prussia, became part of the Soviet
Union (now Russia) at the end of World War II and was renamed ‘Kaliningrad’. The river
Pregel was renamed ‘Pregolya’ and only two original bridges still survive, while a third
bridge is a version rebuilt by Germans in 1935. See [Taylor, 2000] for the story of the
seven bridges.

3The solution to the problem appears in 1736, in Euler’s paper in the Commentarii
Academiae Scientiarum Imperialis Petropolitanae [Euler, 1736]. Although dated 1736,
Euler’s paper was not actually published until 1741.

4Euler reformulated the problem as one of trying to find a sequence of letters of length
eight, containing only letters A,B,C,D (the land areas in Figure 5.1), such that the pairs
AB and AC are adiacent twice (corresponding to the two bridges between A and B and
A and C), and the pairs AD, BD, and CD are adiacent just once. He showed by a
counting argument that no such sequence exists, thus proving that there is no solution
to the Königsberg problem, i.e. it is not possible to make such a tour. More precisely,
Euler showed that if there are more than two areas to which an odd number of bridges
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Imagine that Kant sets out to prove Euler’s point by walking back and

forth across the seven bridges. The reason why he, as anyone else, was not

able to cross the bridges once and return to the starting point, is provided

by Euler’s mathematical result. This reason is, of course, far from being a

“causal” reason. Now, Christopher Pincock focuses on the modern solution,

in terms of graph theory, to the seven bridges problem and considers as ex-

planandum the impossibility of walking the desired route which crosses each

of the seven bridges exactly once:

As my example I take an explanation of why it was impossible to walk a

certain kind of path across the bridges of Königsberg [Pincock, 2007a,

p. 257]

Before seeing what is considered an explanation by Pincock, let me intro-

duce some notions of graph theory5.

A simple graph G consists of a non-empty finite set V (G) of elements

called vertices (or nodes, or points) of the simple graph, and a finite set

E(G) of distinct unordered pairs of distinct elements of V (G) called edges

(or lines). The set V (G) is called the vertex set of G, while E(G) is the edge

set of G. An edge {v, w} is said to join the vertices v and w, and is usually

abbreviated to vw.

In any simple graph there is at most one edge joining each pair of vertices.

lead, then the ‘Eulerian journey’ is impossible [Hopkins et al., 2004, p. 418]. In his solu-
tion, Euler made no mention of graphs. The connection between the Königsberg bridges
problem and diagram-tracing puzzles was not recognized until the end of the 19th cen-
tury. It was pointed out by the British mathematician (and amateur magician) W. W.
Rouse Ball in his book Mathematical Recreations and Problems of Past and Present Times
[Rouse Ball, 1892]. Rouse Ball seems to have been the first to use a diagram to solve the
problem (the diagram he used is that of Figure 5.4). For an historical discussion of Eu-
ler’s solution and the development of the present-day solution see [Hopkins et al., 2004],
[Sachs et al., 1988] and [Wilson, 1986]. In what follows I do not consider Euler’s original
solution but only the modern one in terms of graph theory. This choice is motivated by
the fact that Pincock’s discussion (and his account of abstract explanations) is illustrated
in terms of the modern solution.

5 In presenting the basic notions of graph theory I follow Robin J. Wilson’s Intro-
duction to Graph Theory [Wilson, 1996]. For an introduction to graph theory see also
[Diestel, 2005], while for a general handbook on graph theory (including some historical
aspects and curiosities) see [Gross et al., 2004].
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Figure 5.2: Two representations of the same graph G∗ of order |G∗| = 7 and
number of edges ||G∗|| = 6.

However, many results that hold for simple graphs can be extended to more

general objects in which two vertices may have several edges joining them

(we speak of multiple edges). In addition, we may remove the restriction that

an edge joins two distinct vertices, and allow edges joining a vertex to itself

(loops). The resulting object, in which loops and multiple edges are allowed,

is called a general graph or, simply, a graph. Thus every simple graph is a

graph, but not every graph is a simple graph6. Thus, a graph G consists of

a non-empty finite set V (G) of elements called vertices, and a finite family

E(G) of unordered pairs of (not necessarily distinct) elements of V (G) called

edges. Here the word ‘family’ means a collection of elements, some of which

may occur several times (for example, {a, b, c} is a set, but (a, a, c, b, a, c) is

a family). Note that the use of the word ‘family’ permits the existence of

6Observe that the language of graph theory is not standard and many authors adopt
their own terminology. For instance, some authors use the term ‘graph’ for what I defined
as a simple graph, and then speak of multigraph for a graph which has more than one
edges between two same vertices (this terminology is adopted in [Diestel, 2005]). Here I
follow Wilson’s terminology in his [Wilson, 1996] and therefore I include the condition of
multiple edges between two vertices (a condition which corresponds to our seven bridges
scenario) into the definition of general graph (or graph). This notation seems to be much
more clear, and it makes things easier for us.
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Figure 5.3: Two walks on G∗: 3425 and 14325.

multiple edges7. We call V (G) the vertex set and E(G) the edge family of G.

An edge {v, w} is said to join the vertices v and w, and is again abbreviated

to vw. The number of vertices of a graph G is its order, written as |G|, while

its number of edges is denoted by ||G||. A graph whose E(G) is empty is a

null graph, while a graph in which both the edge family and the vertex set

are empty is called the empty graph.

Usually, a graph is pictured by drawing a dot for each vertex and joining

two of these dots and lines if the corresponding vertices form an edge (if

there is more than one edge between two vertices, we draw two lines). The

way in which these dots and lines are drawn is irrelevant. What is important

is the information of which pairs of vertices form edges and which no. For

instance, the two diagrams in Figure 5.2 represent the same graph G∗ with

V ∗ = {1, ..., 7} and edge family E∗ = (14, 23, 24, 25, 34, 67).

The degree (or valence) of a vertex v of G is the number of edges incident

7Here (again) I follow Wilson’s textbook [Wilson, 1996] and I adopt his notation in
what follows. Nevertheless, let me remark that the multiedge condition (more than one
edges between two same vertices) can be given in a more formal (and more orthodox) way.
For instance, if we define a graph as a pair G = (V,E) of sets such that E ⊆

[
V
]
2 (where

the elements of the set V are vertices and the elements of the set E are edges), we can say
that a multigraph is a pair (V,E) of disjoint sets (of vertices and edges) together with a
map E −→ V ∪ [V ]2 assigning to every edge either one or two vertices.
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with v, and is written deg(v) (in the example in Figure 5.2, deg(4) = 3)8.

We say that two distinct edges are adjacent if they have a vertex in com-

mon (in G∗, the edges 52 and 24 are adjacent because they have vertex 2 in

common). Given a graph G, a walk in G is a finite sequence of edges of the

form v0v1, v1v2, ..., vm−1vm, in which any two consecutive edges are adjacent

or identical. Such a walk determines a sequence of vertices v0, v1, ..., vm, and

we speak of a walk from v0 to vm with initial vertex v0 and final vertex vm.

We often refer to a walk by the natural sequence of its vertices. For instance,

when we write v0v1v2...vm, this is a walk from v0 to vm. The number of edges

in a walk is its length. In Figure 5.3 I traced two possible walks for the graph

G∗: 3425 of length 3 (on the left) and 14325 of length 4 (on the right). A

walk in which all the edges are distinct is a trail. If, in addition, the vertices

v0, v1, ..., vm are distinct (except, possibly, v0 = vm), then the trail is a path.

In other words, a path is a walk in which all the edges and all the vertices

are distinct, with the only possible exception v0 = vm (for instance, the two

walks 3425 and 14325 on G∗ are two paths). If v0 = vm we say that the path

or trail is closed. A graph is said to be connected if and only if there is a path

between each pair of vertices. For instance, the graph G∗ is not connected

because there is no path between vertex 3 and vertex 6.

A connected graph G is Eulerian if there exists a closed trail containing

every edge of G. Such a trail is called an Eulerian trail. Observe that this

definition requires each edge to be traversed once and once only.

Now, with the aid of the previous notions, let’s come back to our prom-

enade across the Königsberg bridges. If we treat the islands and the banks

(A,B,C,D in Euler’s original diagram in Figure 5.1) as objects labeled as

1, 2, 3, 4, and we use the bridges to form edges a, b, c, d, e, f, g, the physi-

cal configuration of the seven bridges is represented by the graph Gb with

Vb(Gb) = {1, 2, 3, 4} and E(Gb) = (12, 12, 42, 42, 13, 23, 43). This graph,

which is pictured in Figure 5.4, is connected because there is path between

each pair of vertices. Therefore the seven bridges problem can be rephrased

8In calculating the degree of a vertex v, we usually make the convention that a loop at
v contributes 2 (rather than 1) to the degree of v.
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Figure 5.4: Picture representing the graph Gb. This graph formalizes the
seven bridges problem.

as follows: Is the connected graph Gb Eulerian? (Or, which is the same: Does

the connected graph Gb admit an Eulerian trail?).

Although the solution to the seven bridges problem was given by Euler

in his 1736 paper (not in terms of graph theory!), in every textbook of graph

theory the solution to our puzzle is given in terms of the following theorem:

Theorem 5.1. A connected graph G is Eulerian if and only if the degree of

each vertex is even 9

The impossibility of crossing all the bridges exactly once and return to the

starting point is then stated by previous theorem, because at least one of the

vertices of our graph Gb has an odd degree (more precisely, they all have odd

valence!), and then the graph is non-Eulerian. Therefore, we may conclude

(as did Euler) that the attempts by the residents of Königsberg were in vain.

Conversely, a graph such that pictured in Figure 5.5 is Eulerian. This means

that, if the Königsberg scenario had been that corresponding to Figure 5.5,

it would have been possible to cross all the bridges exactly once and return

to the starting point.

9For a proof see [Wilson, 1996, p. 32].

247



1

42

3

a

b

c

d

Figure 5.5: Representation of an Eulerian graph, where the Euler tour is
possible.

5.2 Pincock’s abstract explanations

In his paper“A role for mathematics in the physical science”[Pincock, 2007a],

Pincock considers the seven bridges problem as an illustration of a particular

kind of explanation: abstract explanation.

As we have seen in the previous section, in the seven bridges problem

the explanandum is not a physical phenomenon in the classical sense (for

instance, the particular behavior of a physical system such as a gas or the

motion of a planet around the Sun), but a particular actualizable situation

which depends on an actual physical system (the impossibility of making the

Euler tour across the seven bridges). This is what Pincock takes as the ex-

planandum X: the fact that it is impossible to walk a certain kind of path

across the bridges of Königsberg.

But what exactly is the ‘explanation’ for the case considered? Pincock

regards the property of vertices of having odd valence as providing an expla-

nation of X:

If I was asked to explain why it is impossible to make such a crossing,

then I would appeal to the fact that one of the vertices has an odd

valence. [Pincock, 2007a, p. 259]
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I claim that it is a fact about the bridges of Königsberg that they

are non-Eulerian and that an explanation for this is that at least one

vertex has an odd valence. Whenever such a physical system has at

least one bank or island with an odd number of bridges from it, there

will be no path that crosses every bridge exactly once and that returns

to the starting point. If the situation were slightly different, as it is

in K ′ [Eulerian graph], and the valence of the vertices were to be all

even, then there would be a path of the desired kind. [Pincock, 2007a,

p. 259]

Naturally, to know that at least one vertex has an odd valence would

be meaningless for our explanation without the specific knowledge of theo-

rem 5.110. However, the fact to consider that it is a property of vertices,

and not the particular theorem, which provides the essential ingredient in

the explanation, makes a considerable difference. To appeal to the fact that

the number of vertices/banks is even is to appeal to a structural property of

the actual physical system (the system bridge-banks). This kind of expla-

nation has, according to Pincock, “different features from the explanations

involving coordinate systems” [Pincock, 2007a, p. 257]. In fact, in the case

of the seven bridges problem, without using any coordinate system or unit

of measurement, we are offering an explanation which draws only on a for-

mal relational feature of the system bridges-banks: the parity of the number

of vertices, where vertices/banks are defined in relation with edges/bridges.

Now, an essential ingredient in order to have our mathematical explanation

of the path restrictions is the procedure of mapping some of the structural

(actual) relations between parts of the bridge-system into the graph struc-

ture. For instance, while being a structural feature, the fact that one bridge

is longer than the others is irrelevant to the mapping relation and does not

figure among the elements of our representational mathematical graph. Al-

though the actual bridge-system is not a graph, Pincock maintains that there

10For instance, Pincock writes: “Knowing Euler’s theorem, I could now explain why we
could cross all the bridges exactly once and end up at the starting point by appealing to
the fact that all the vertices have an even valence” [Pincock, 2007a, p. 259].
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is a structural similarity between the bridge-system and the graph: “[...] the

bridge system has the structure of a graph, in the sense that the relations

among its parts allow us to map those parts directly onto a particular graph”

[Pincock, 2007a, p. 260]. This is why, for him, to explain why an Euler tour

is possible would amount to saying that all the vertices have an even valence

(situation of Figure 5.5). This explanation is a particular kind of explanation,

which he calls abstract explanation:

By an abstract explanation I mean an explanation that appeals pri-

marily to the formal relational features of a physical system. Some

abstract explanations that employ mathematics seem to qualify as in-

trinsic explanations. This is because even though they can be thought

of as involving mappings between a physical system and a mathemat-

ical domain, these mappings do not turn on any arbitrary choice of

units, but concern only the intrinsic features of the systems repre-

sented [Pincock, 2007a, p. 257]

As Pincock observes, this kind of explanation seems superior to other

kinds of explanations that might be given in terms of the microscopic con-

figuration of the system. For instance, consider that we have an explanation

of the impossibility to make our Euler tour across the bridges in terms of

the microscopic configuration of the bridge-system. Can we use the same

explanation if we turn the bridges into silver? The answer is no because the

microscopic configuration will be altered. On the other hand, our explanation

in terms of the parity of the vertices would still work. Therefore it seems that

“abstract explanation seems superior because it gets at the root cause of why

walking a certain path is impossible by focusing on the abstract structure of

system” [Pincock, 2007a, p. 260].

In passing, let me note that Pincock considers abstract explanations as a

particular species of structural explanations, where the latter are defined by

Ernan McMullin:

When the properties or behavior of a complex entity are explained by

alluding to the structure of that entity, the resultant explanation may
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Figure 5.6: Pincock’s abstract explanations are explanations which appeal
to formal relational features of the physical system.

be called a structural one. The term ‘structure’ here refers to a set of

constituent entities or processes and the relationships between them.

[McMullin, 1978, p. 139]

We can say that Pincock’s idea is that the representational capacity of the

graph (which, keep in mind, is a mathematical entity!) is a source of explana-

tory power due to the ability of the graph to pick out structural relational

features of the actual system (as my diagram in Figure 5.6 suggests). Note

how this idea is very close to Margaret Morrison’s: mathematical models are

explanatory because they “exhibit certain kinds of structural dependences”

[Morrison, 1999, p. 63]. Hovewer, there are some differences between Pin-

cock’s and Morrison’s view. Perhaps the most evident, and also the most

relevant for our discussion, is that while for Pincock the representational

capacity is defined in terms of mapping relation of structures (‘mapping cri-

terion’), and explanatory power is the result of this representational capacity,

for Morrison the explanatory power of a model is a function of its represen-

tational feature where the nature of the representation cannot be uniquely

characterized. In Morrison there is nothing like a mapping criterion (models

are seen as “autonomous” agents which mediate between theories and phe-
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nomena). Again, for Pincock the ‘picking out’ of structural relational features

of the actual system is possible because there is some structure-preserving

mapping between the world and the mathematical structure in question, and

then the mapping is essential to the explanatory role of the representation11.

Observe here that the mapping is itself a mathematical object, therefore to

say (as Pincock suggests within his account) that the structure-preserving

mapping is essential to his abstract explanations amounts to saying that we

are considering a case of MEPP.

There is an additional story about Pincock’s structuralist position, which

concerns the interpretation of statements arising in applied mathematics and

which is supposed to give a possible ground to his approach to the applicabil-

ity of mathematics. This story is relevant to my discussion for two reasons:

it complements his view on the applicability of mathematics, thus providing

a more distinct picture of the framework in which his abstract explanations

are discussed; it permits me to present the ontological commitment which

follows from his structuralism, and to show how abstract explanations help

Pincock to defend his ontological position (once more, we will see how the

11Observe that in his [Pincock, 2007a] Pincock only considers isomorphisms and homo-
morphisms as the mapping to be used in his structuralist proposal. An homomorphism is
a mapping from one structure A (with a domain D, and a family of relations R among the
elements of D) to another structure B (with codomain D′, and a family of relations R′

among the elements of D′) that respects the relations of A by assigning each element of R
to a corresponding element of R′. That is, an homomorphism maps not only the objects
of one domain to another; intuitively, it does so in such a way that preserves certain as-
pects (although typically not all) of the structures involved. An isomorphism is a bijective
homomorphism, i.e. an homomorphism which is injective and surjective (it is one-to-one
and every member of the codomain is the image of at least one member of the domain).
As pointed out by Bueno and Colyvan, Pincock’s silence on the potential use of different
types of mapping comes presumably from his conviction that the kind of mapping changes
depending on the application in question [Bueno et al., 2011, p. 347]. This observation
fits well with what Pincock himself says in another article: “Each kind of application, of
course, needs a different kind of a mapping, but it does offer a unified account of mixed
statements.” [Pincock, 2004b, p. 150]. What about the status of these mappings? Pin-
cock considers mappings involved in the applications of mathematics as relations, with
the requirement that relations bear an external relation to their relata and these relations
exist independently of whathever entities they happen to relate (the same relation exists
regardless of which objects it has as relata). He points out how this demand is fulfilled by
adopting an account of relations (and a criterion of identity for intensional entities) such
as that developed by George Bealer in model theoretical terms [Bealer, 1982].
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topic of MEPP comes as crucial ingredient in the ontological debate in phi-

losophy of mathematics).

In his [Pincock, 2004b], Pincock focuses on the content and the meaning of

statements such as ‘The mass of the satellite is 1500Kg’. Those kinds of state-

ments are called mixed statements because in them we find the occurrence

of mathematical terms together with non-mathematical terms. Naturally, to

think about the meaning of mixed statements is to think about some rela-

tionship between the actual object (the satellite), the actual standard gram,

the mathematical term (the real number 100). Pincock individuates three

approaches which target the meaning of mixed statements and which claim

to solve the problem of applicability:

α No-relation account: this view denies the existence of any relation which

connects the mathematical and the physical domain. For instance, fictional-

ists such as Hartry Field, considers true a claim like ‘The mass of the satellite

is 1500Kg’ but deny that there exists a relation between the satellite, the

gram and the real number 1500. According to Field, the truth of statements

like that depends only on properties of the satellite and its physical relations

to other physical objects12.

β Internal-relation account: according to this view mixed statements require

(for their truth) that an internal relation obtain between the mathematical

domain and the physical world. An internal relation for an object a is a

relation that a must stand in if it is to be that particular object: a stands

in an internal relation R to b just in case aRb’s obtaining is involved in a’s

criteria of identity. According to Pincock, an example of internal relation is

that between a set and its members13, while an example of internal-relation

account is offered by Frege’s definition of natural numbers in terms of their

paradigm application to counting [Frege, 1980]14.

12Remember that Field denies the existence of mathematical objects and argues for the
view that mathematics is dispensable from science [Field, 1980].

13For instance, if b and c are members of the set S, the set S bears an internal relation
to b and c. A set which has different members will be different from S.

14Pincock also considers Steiner’s approach to application expressed in his book The
Applicability of Mathematics as a Philosophical Problem [Steiner, 1998] as an internal-
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γ External-relation account: in this picture, mixed statements require (for

their truth) the existence of an external relation between the mathematical

domain and the physical situation, i.e. a relation that does not involve the

criteria of identity of the mathematical objects.

Both the internal-relation and the external-relation accounts accept that

mixed statements depend on a relation between mathematical and physical

domains for their truth. However, they differ in what is considered the right

kind of relation (internal or external). The mapping-structuralist approach

proposed by Pincock in order to account for mixed statements and for the

application of mathematics is an external-relation account. It is structuralist

because “the truth of mixed statements depends on the existence of a map-

ping with certain structural properties, and these properties can be picked

out in structural terms” [Pincock, 2004b, p. 146]15. For instance, the mixed

statement ‘there are five apples on the table’ comes true just in case there is

an isomorphism, i.e. a mapping preserving cardinality and structure, from

apples to the initial segment of the natural numbers ending with 5.

There is a feature that external-relation accounts have with respect to

no-relation and internal-relation accounts, and concerns what Pincock calls

the “Dummett’s dilemma” [Pincock, 2004b, p. 141]. The dilemma consists in

the choice between the two desiderata16:

relation account, although observing that some of Steiner’s remarks point to a non-internal
or perhaps to an hybrid solution [Pincock, 2004b, p. 142-143].

15Pincock notes that, while being compatible with, its structuralism is independent
of a structuralist account of pure mathematics, i.e. the view that the subject matter
of mathematics is abstract structures. This structuralist view is maintained by Stewart
Shapiro [Shapiro, 1997] and Michael Resnik [Resnik, 1997]. In passing, let me observe that
when structuralism in pure mathematics is demanded to account for the applicability of
mathematics to reality, the two structuralisms (Pincock’s and Shapiro and Resnik’s) are
more than compatible and seem to converge. For instance, Shapiro writes: “According to
the structuralist, the application of mathematics to science occurs, in part, by discovering
or postulating that certain structures are exemplified in the material world. Mathematics
is to material reality as pattern is to patterned” [Shapiro, 2005, p. 21]. In the latter
quotation from Shapiro, the process of “exemplification” presupposes a mapping.

16In his paper “What is mathematics about?” [Dummett, 1993], Michael Dummett has
observed how the two desiderata are often in conflict. Here is Dummett’s original passage
quoted by Pincock: “The difficulty about mathematical objects thus arises because we
want our mathematical theories to be pure in the sense of not depending for the existence
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(1) we want an account of mathematics that guarantees the applicability

of mathematics to the world

(2) we want to preserve the necessity of mathematical truths

The difficulty for no-relation and internal-relation accounts in satisfying

both of the two desiderata is noticeable. By providing a direct relation which

links mathematical objects to the world, an empiricist philosophy of mathe-

matics will guaranteee (1) at the cost of sacrifying (2). On the other hand, an

account of mathematics that would preserve the necessity of mathematical

truths might be in danger of offering only a weak relation between mathe-

matics and the physical world. According to Pincock, an external relation

account “promises to resolve Dummett’s dilemma” [Pincock, 2004b, p. 145].

What is then the feature that an external-relation account has with respect

to these positions (and which would permit to solve the dilemma)?

Recall that, in an external-relation account, mixed statements require (for

their truth) the existence of an external relation between the mathematical

domain and the physical situation (a relation which does not involve the cri-

teria of identity of the mathematical objects). In Pincock’s structuralism,

mixed statements require (for their truth) the existence of a mapping with

some structural properties. Now, according to Pincock, the crucial feature of

external-relation accounts lies in the fact that, if based on a genuine external

relation, such accounts potentially offer a connection between the physical

world and mathematics which does not affect the necessity of mathematical

truths (thus satisfying both the desiderata above). Nevertheless, to solve

the dilemma amounts to showing that the external-relation account is able

to provide enough external relations between the physical and mathematical

objects to ensure the applicability of mathematics to science. Concerning

this point, Pincock’s claim is that his structuralist approach, if generalized

further, would provide such relations (in terms of mappings), thus preserving

of their objects on empirical reality, but yet to satisfy axioms guaranteeing sufficiently
many objects for any application that we may have occasion to make” [Dummett, 1993,
p. 437-438].
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the applicability and the independence of mathematics17.

5.2.1 Pincocok’s structuralism and ontological commit-

ment

Let me spend some further words on what Pincock considers the epis-

temic utility of applied mathematics and the ontological commitment which

follows from his structuralist position. In this discussion, as we are going to

see, his idea of abstract explanation plays a very important role. Moreover,

the following lines are intended to show that (and how) the notion of MEPP

is deeply involved in the ontological debate between platonists and nominal-

ists.

Keep in mind that in the seven bridges problem there is nothing like a

causal-history of the system, and causal relationships (whatever they are!)

and unit of measurement do not have any influence in elaborating the math-

ematical solution to the problem. The mathematics of graph theory offers an

explanation of X (which is an actual situation, and then a sort of physical

phenomenon) although it is no possible to trace a causal history of X or in-

dividuate a causal relation relevant to our problem (for instance, as we have

seen, the interactions between the molecules of the bridges are largely irrele-

vant). Therefore mathematics does play an essential role in the explanation

provided. More precisely, to put it in Pincock’s structuralist language, this

abstract explanation appeals to mappings that do not turn on any arbitrary

choice of units but concern only the intrinsic features of the systems repre-

sented.

Now, according to Pincock, his structuralist approach to the application

of mathematics defends the theoretical indispensability of mathematics from

attacks such as that of Hartry Field. As it is well-known, Field argued not

17The independence of mathematics is preserved because, differently from what an em-
piricist philosophy of mathematics would require, the relation used in evaluating the truth-
ful of mixed statements in Pincock’s account (as in every external-relation account) is inde-
pendent from what happens in the world (roughly, the world does not affect mathematical
objects), and therefore mathematical truths are preserved [Pincock, 2004b, p. 153]
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only for the metaphysically dispensability of mathematics (i.e. the view that

mathematical entities have no relevant causal role in the actual world), but

also for its theoretically dispensability. In fact, he tried to show that mathe-

matics is theoretically dispensable by offering non-mathematical versions of

some parts of classical mechanics [Field, 1980]. His program is based on a

conception of the application of mathematics according to which the ontol-

ogy includes points and regions of space time (which are, in Field’s opinion,

concrete entities18), and every non-mathematical conservative theory to use

in his representational theorems will invoke only such space-time regions and

points (while magnitude will be defined as properties of such entities).

Against Field’s theoretical dispensability, Pincock points out how, in the

case of the graph-solution to the bridge problem, Field’s strategy would

be impossible to apply because the treatment of the system in terms of

graph theory does not make reference to points or regions of space-time.

A similar line of criticism against Field’s strategy was advanced by David

Malament in his review of Field’s Science Without Numbers [Field, 1980].

More precisely, Malament pointed out how scientific theories formulated in

terms of phase-spaces cannot be handled by Field, and this exactly because

these theories represent abstract objects and not space-time points or regions

[Malament, 1982, p. 533]19. A recent revival of this criticism, advanced in

connection with MEPP, has been proposed by Aidan Lyon and Mark Coly-

van [Lyon et al., 2008]. They picture a possible nominalist response to Mala-

ment: phase-space theories do not add any new physics to the picture, and

so any physical law that can be stated in terms of points in phase space has

an equivalent nominalist counterpart (which we do not have at the present

day!). However, even if we grant this response, they add that there is an im-

18Although considering points in space time as concrete entities, Field does not trace a
clear distinction between abstract and concrete objects [Malament, 1982, p. 532].

19Points in phase spaces are abstract objects that represent other abstract objects (pos-
sible dynamical states), whereas the points in manifolds are abstract objects that represent
other concrete objects (points in space-time). So, applying the kind of representation the-
orems that Field employs to deal with Newtonian space-time, clearly will not do the trick
for the case of phase-spaces theories.

257



portant role that phase-space theories play in science apart from their ability

to provide a neat expression of the relevant laws of physics: phase-space

theories are considered to play an explanatory role [Lyon et al., 2008, p. 7].

The point is of crucial importance if we note that Field accepts the principle

of inference to the best explanation [Field, 1989, p. 15-16]. So, according

to Lyon and Colyvan, any nominalist reformulation of our scientific theories

that he provides must have at least the same explanatory resources as the

platonist counterparts. But this, again, seems to be impossible in cases such

as that of phase-space theories, which represent mathematical explanations

to which there is non-mathematical counterpart [Lyon et al., 2008, p. 3].

In situations like these (the graph-solution to the bridges problem or the

use of phase-space), Pincock observes, mathematics appears to be theoret-

ically indispensable while metaphysically dispensable. The metaphysically

dispensability comes from the fact that, even if mathematics has an essen-

tial and epistemic role in the formulation of theories which are confirmed

by the evidence, the process of abstraction involved in a situation as that

of the seven bridges problem does not attribute to mathematical entities

any relevant causal role in the world. This traces a dividing line between

Lyon and Colyvan’s position and Pincock’s. In fact, while Lyon and Colyvan

attack Field and maintain that mathematics is theoretically and metaphys-

ically indispensable, Pincock considers that cases such as the seven bridges

problem show that mathematics is theoretically indispensable although be-

ing metaphysically dispensable. There is, for Pincock, an epistemic utility

in using mathematics in cases such as the seven bridges problem. However,

this essential epistemic role of mathematics does not entail its metaphysical

indispensability. Let me conclude this section by disentangling better the

difference between Pincock’s ontological commitment and Colyvan’s.

For Pincock, the structural approach to the application of mathematics

requires the truth of applied mathematical assertions, which are confirmed

within mathematics itself, but it does not require that mathematical entities

exist. He points out that mathematics plays its role of being theoretical indis-
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pensable when it is confirmed prior to its application to science. Therefore he

remarks that its point in favor of a reconciliation of theoretical indispensabil-

ity with metaphysical dispensability must not be read as an attempt to argue

for platonism on the basis of indispensability arguments [Pincock, 2007a, p.

255]20. On this point the difference with Mark Colyvan is evident. While

they both share Malament’s criticism against Field, contrary to Pincock,

Colyvan is favourable in considering the explanatory power of mathematics

in scientific theories as an instrument to infer the existence of mathemati-

cal entities and to ‘embrace platonism’ [Colyvan, 2002, p. 69]21. In giving a

MEPP this essential role for supporting his realist view, he is adopting the

so called “enhanced indispensability argument”:

1 We ought rationally to believe in the existence of any entity that plays an

indispensable explanatory role in our best scientific theories.

2 Mathematical objects play an indispensable explanatory role in science.

3 Hence, we ought rationally to believe in the existence of mathematical

objects.

I will come back to the enhanced indispensability argument in the final

part of the dissertation, where I will maintain that, contrary to what Colyvan

thinks, the inference obtained through this argument is not viable. For the

present discussion, let me add that, for Pincock, an abstract explanation such

as that given in terms of graph theory in the case of the seven bridges cannot

be used to infer the existence of some mathematical entity.

20But what about confirmation of mathematics prior to its application? Pincock does
not offer a precise definition of how this confirmation should be made: “Ideally my account
of the role of mathematics in physical theories would be supplemented with a story of
exactly how mathematics is confirmed by mathematicians. I do not have such a story
ready to hand, and so must fall back on the naturalistic premise that if mathematicians
accept a given body of mathematical theory, they must have taken appropriate steps to
confirm it” [Pincock, 2007a, p. 264].

21In section 2.1, when in footnote I sketched the general lines of the Melia-Colyvan
debate, I have already pointed to the importance that Mark Colyvan gives to MEPP in
the context of the enhanced indispensability argument.
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In the next section I am going to consider the following question: if the

mapping accounts are representative, how do they account for the use of

idealizations in science? This question is important for my investigation,

especially if we note that mathematical idealizations are often considered to

play an explanatory role in science.

5.3 Mapping accounts and idealizations

There is an important aspect of mapping accounts which is relevant to

MEPP and which has not yet been addressed. Mapping accounts are repre-

sentative, but in science we usually represent the actual system by introduc-

ing a deliberate falsification (for instance, in order for the system to be mathe-

matically tractable). Call ‘idealization’ this deliberate distortion of some fea-

tures of the actual system under study [Cartwright, 1989, p. 187]. In these

situations, the resulting mathematical representation comes from nothing as

a structure-preserving mapping and is known to be false of the actual world

(since idealizations are necessarily false of the physical world, there can be

no physical structure to be mapped onto an appropriate mathematical struc-

ture). How then do the partisans of mapping accounts, who claim to solve

the problem of application of mathematics in terms of structure-preserving

mapping between the empirical world and mathematics, accommodate such

representations resulting from idealization? This is a serious problem for the

mapping accounts, and Pincock, Bueno and Colyvan are well aware of that

([Pincock, 2004b, p. 137] and [Pincock, 2007a, p. 271], [Bueno et al., 2011,

p. 351]). A second question comes as a direct consequence: if we accept that

idealizations do contribute to explanation, that is something well accepted

([Cartwright, 1983], [Portides, 2008], [Morrison, 1999])22, how do mapping

accounts accommodate their explanatory role and classify idealizations as

22While not explictly, even Pincock and Bueno and Colyvan seem to agree on this.
Batterman makes the explicit claim that they accept the idea that idealizations can be
explanatory: “My argument depends upon accepting the idea that idealizations can in-
deed be explanatory (This is something both Pincock and Bueno and Colyvan accept)”
[Batterman, 2010, p. 23].

260



more or less explanatory? The (recognized) explanatory role of idealizations

might then be ‘read’ as a motivation for accomodating idealizations in map-

ping accounts. For instance, Robert Batterman observes:

Many explanatory models appear to involve idealizations. We speak

of frictionless planes when there are no such things, and we idealize

fluids to be continua when, in fact, they are composed of discrete fi-

nite collections of molecules. If we accept that idealizations can and

do play important roles (perhaps even explanatory roles), then that

raises a deep problem for mapping accounts of the applicability of

mathematics. The problem is simple: Nothing in the physical world

actually corresponds to the idealization. So in what sense can we

have a mapping from a mathematical structure to an existing physical

structure? Mapping accounts are representative and good represen-

tations reflect the truth about the world. Idealizations, however, are

false. [Batterman, 2010, p. 11-12]

The connection between the two questions is obvious if we state the point

in the following way. Consider Pincock’s view that explanatory power is a

consequence of representational capacity (as we have seen in his abstract ex-

planations). Now, consider we have idealized assumptions in play. In that

case, the representational capacity of the model will not say anything about

the explanatory power of the model, and this simply because the represented

model is, strictly speaking, false. How then do we ‘weigh’ the explanatory

power of the idealized model in structuralistic terms? There is clearly some-

thing missing.

To sum it up, we have so far individuated two general and dependent

questions:

α How do mapping accounts accommodate idealizations?

β How do mapping accounts accommodate the explanatory role played

by idealizations?
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Naturally, to answer β by providing some criteria to evaluate the explana-

tory power of idealizations would amount to having a potential way to rank

idealizations in terms of explanatory power.

In the following subsection I will present Pincock’s solutions to the first

question, which is a necessary bridge to the second one23. After this, in the

final section, I will propose a recent criticism put forward by Robert Batter-

man [Batterman, 2010]. In particular, he has observed how question β has

not yet received a sufficient answer from the partisans of mapping accounts.

According to Batterman, a possible solution for them would be to adopt a

“Galilean” conception of idealizations (discussed below), and this would pro-

vide them with some kind of method to rank the degree of explanatory power

of idealizations. However, as Batterman observes, to adopt this solution does

not eliminate a further difficulty: there are idealizations which play explana-

tory roles without representing the system under study. This points to a

more general limitation of mapping account of applied mathematics, which

are representative, and leads to the conclusion that representation is not a

necessary condition for explanation. I will discuss the latter point in the final

part of the chapter.

5.3.1 Ranking idealizations

The missing part of Pincock’s structuralist account, i.e. the story about

idealizations, is given in his paper“Mathematical Idealizations”[Pincock, 2007b].

Pincock defines idealization in a way equivalent to that of Nancy Cartwright

[Cartwright, 1989, p. 187]:

23Bueno and Colyvan propose to accommodate idealizations in their inferential concep-
tion by appealling to partial mappings between actual world and mathematical structures
[Bueno et al., 2011, p. 358]. The formal background of the partial structures approach is
given in [Bueno et al., 2002] and [Da Costa et al., 2003]. In what follows I will concentrate
only on Pincock’s proposal, which I have considered up to now. There is another moti-
vation behind this choice, and amounts to observing that Bueno and Colyvan’s answer
to question α in terms of partial representation is to some extent analogous to Pincock’s
answer to the same question in terms of equation and matching model [Batterman, 2010,
p. 16].
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I will say that a representation results from idealization when the steps

leading up to the representation involve deliberate falsification, that

is, assumptions are invoked that the agents constructing the represen-

tation believe to be false [Jones, 1998]. And an idealization will be

mathematical just in case these assumptions, or the resulting repre-

sentation, involve mathematics in some crucial way. [Pincock, 2007b,

p. 957]

How then can those false assumptions, which are essential to our science,

contribute to good representations? Pincock answers this question by propos-

ing a ranking of idealizations in terms of their representational capacity and

contextual factors (beliefs and intentions of scientists doing the representa-

tion).

The starting point for this ranking is given by defining two kinds of mod-

els [Pincock, 2007b, p. 961]. The physical situation under study is perfectly

reflected (in all the physical features) in what Pincock calls the “matching

model”, i.e. a model which ideally mirrors (mathematically) all the physical

magnitudes of the target system. The mathematical model (for instance, an

equation) resulting from the idealization is called the“equation model”. Thus

every physical parameter has a counterpart in the matching model, that is,

there is an isomorphism between the target system and the matching model,

while the equation model represents a class of models and comes from a math-

ematical idealization. At this point, the question α for Pincock’s mapping

account can be stated in the following way: How the (false) equation model

can be representative? Pincock’s idea is that the equation model represents

a physical situation when:

(A) there is an isomorphism between the matching model and the physical

situation

(B) there is an acceptable mathematical transformation between the equa-

tion model and the matching model24

24Observe that Pincock leaves open the possibility that, in cases where we have an
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The notion of ‘acceptability’ of mathematical transformation is central to

Pincock’s proposal. To consider the mathematical transformation as accept-

able draws on contextual factors:

A mathematical transformation will be acceptable when it is consis-

tent with the goals of the scientists in terms of scale and accuracy.

[Pincock, 2007b, p. 963]

I will consider his example in a moment. Before passing to that, let

me add an observation. Recall that, for Pincock, in line with the seman-

tic view, a representation is a mathematical model or set of mathematical

models [Pincock, 2007b, p. 959]. However, as it emerges from the previous

quotation, his position differs from the semantic view with respect to a major

point: Pincock rejects something like a “naturalistic account of scientific rep-

resentation” [Suárez, 2003] and proposes an account in which the beliefs and

the intentions of the scientists doing the representation are taken into con-

sideration25. Bueno and Colyvan’s claim that Pincock’s proposal is “purely”

structural [Bueno et al., 2011, p. 352] should then be rejected because it is

not true. What is more, the contextual and pragmatic extension proposed

in their inferential conception of the application of mathematics has much in

common with Pincock’s appeal to “goals of scientists”26.

In order to illustrate how his proposal works, Pincock proposes a simple

example of representation which results from an idealization. Consider the

amount of heat per unit of time passing from a warmer plate 2 to a cooler

plate 1. This quantity is given by the following discrete equation (“Newton’s

idealized representation, such transformation (relating the equation and the matching
model) is not found by scientists, or even it does not exist [Pincock, 2007b, p. 963-964].

25There is also a second point of difference between the semantic view and Pincock’s:
while for the classical semantic theorist the models involved in scientific representation are
models as we find in model theory, for him the models which represent a physical system
via a structure preserving mapping are “wholly mathematical” (the entities in the domain
are mathematical entities like real numbers and pure sets) [Pincock, 2007b, p. 960].

26This similarity is stressed by Batterman [Batterman, 2010, p. 14].
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law of cooling states”):

∆Q

∆t
=
kA

d
|T2 − T1|, (5.1)

where ∆Q is a discrete quantity of heat, k is the termal conductivity of the

material, T1 and T2 are the respective temperatures of the plates, A is their

area and d is the distance from one another.

Equation 5.1, which is formulated in terms of finite differences of heat over

finite periods of time, can be replaced by the ‘more idealized’ one dimensional

heat equation

∂

∂t
u(x, t) =

k

ρs

∂2

∂x2
u(x, t), (5.2)

where u(x, t) is a function describing temperature at a point x at time t, ρ

is the material density and s its specific heat27. The heat equation 5.2 is

then a partial differential equation in which discrete quantities are consid-

ered as continua. Nevertheless, to see these quantities as continua (in the

passage from 5.1 to 5.2) presupposes the assumption that the material being

investigated is continuous, something which is evidently false. For instance,

if we use the heat equation to study a bar made of iron, the bar will contain

atoms of iron and other impurities. Moreover, another iron bar will have a

different microscopical structure. The question is: How do we account for

the representativeness of equation 5.2?

In Pincock’s terminology, equation 5.2 is what stands for the equation

model, that is, what cuts down the “complete class of models reflecting all

logically possible combinations of position, time and temperature to those

that the equation will permit” [Pincock, 2007b, p. 962]. The equation model

is the idealized mathematical model. In the case of the iron bar, the matching

model is a model in which not only the physical magnitudes which appear

in the continuous heat equation are mapped (via an isomorphism), but also

other physical features like the color of the bar, the positions of the iron

27For the details of the derivation of the heat equation from equation 5.1 see
[Cannon, 1984].
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molecules over time, and so on. How do we pass from the matching model to

the equation model? More precisely, how do we recognize that there exists

a mathematical transformation between the matching model and the equa-

tion model? Pincock’s idea is that we use equation 5.1 as starting point,

where we have good reasons to think that this equation accurately describes

some features of the matching model [Pincock, 2007b, p. 963]. Among these

features it does not figure the color of the bar, and this because we are not

interested in this feature but in the representation of the scale temperature

dynamics on the iron bar. By working mathematically on equation 5.1, and

introducing some constraints, we extract the equation model 5.2. Accord-

ing to Pincock, to accept that there exists a transformation between the

matching model and the equation model amounts to proving that the model

equation and the original equation from which we started will agree on cer-

tain magnitudes within certain constraints [Pincock, 2007b, p. 963]. In the

case of the iron bar, this agreement (on temperature) is found by considering

a specific (medium) range of time and distances. The equation model is then

“good” because the mathematical relation captures this relevant feature of

the matching model. On the other hand, if we consider shorter and longer

timescales, this agreement will not be found (this is because in the long term

the heat loss to the environment will become a dominating factor, while in

the short time the particle-particle interaction will become more significant

to the temperature dynamics). Finally, the fact that the equation model is

representational (although idealized) depends from some contextual consider-

ation, and precisely from the fact that scientists can accept a transformation

from the equation to the matching model:

My proposal is to go contextual.We bring in the goals that the scien-

tists have in mind for their representation. In the heat equation case,

the goal is most likely to be to represent the medium scale temperature

dynamics of the iron bar for a short period of time. This provides for a

certain threshold of error. So, in such a case, if there is a mathematical

transformation from the equation model to the matching model that
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falls within this threshold, then we have a good or adequate idealized

representation. If, despite the beliefs and intentions of the scientists,

there is no such mathematical transformation, then the idealized rep-

resentation is bad or inadequate. The upshot of this proposal is that

we must look at the goals that the scientists have for the representation

if we are to evaluate its goodness. What is an adequate idealized rep-

resentation for some purposes may be inadequate for other purposes.

Obviously, the heat equation is not going to be adequate to represent

the color of the iron bar as the associated equation model contains

nothing relevant to color. But even though it does have features tied

to temperatures, there is also not going to be an acceptable mathe-

matical transformation that gets the temperature dynamics right on

the microscale. [Pincock, 2007b, p. 962]

These contextual factors permit Pincock to rank idealizations according

to their adequacy for the specific situation under study. He writes:

In my paper on idealization, I distinguish between good and bad ide-

alizations. This distinction draws not only on the mapping account of

content, but also appeals to other factors like the beliefs and goals of

the scientists which deploy the model [...] it is important to be clear

that I did not intend to offer such a ranking of idealizations only in

terms of their goodness. There is a second respect in which idealiza-

tions are ranked. This is in terms of our knowledge of the goodness of

these idealizations [Pincock, 2011a, p. 213]

More recently, Pincock has shifted from the two-models picture presented

in the previous lines to a simplified version of it [Pincock, 2011d], while re-

taining the basic idea of his original approach to idealizations. More precisely,

he simplified the above two-models picture by eliminating the idea of match-

ing model, thus allowing to consider the direct (mathematical) relationship

between the target system and the equation model. According to this refine-

ment, in the previous example we focus on the transformation which links

the target system to the equation model (alway starting from the discrete
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equation, which picks out some features of the target system). At this point,

Pincock’s new claim is that the false assumptions which come into play (for

instance, those which permit to go from the discrete equation to the contin-

uous one) should be considered only as a mean to obtain the representation.

This amounts to saying that the false assumptions are no longer physically

interpreted in the equation idealized model:

false assumptions take us from an interpreted part of a scientific rep-

resentation to an idealized representation where this particular part is

no longer interpreted [Pincock, 2011d, p. 11]

For instance, in the case of the heat equation, this would mean that

the hypothesis about the structural ‘continuity’ of the iron bar does not

correspond to any interpretation (concerning the continuity of the iron bar) in

the equation model, but it is used to fix some genuine representational content

like temperature. Again, Pincock stresses the point that there exists an

acceptable scale on which the target system and the idealized model equation

“agree”.

5.4 Is representation a necessary condition

for explanation?

Pincock, as Bueno and Colyvan, welcomes the idea that idealizations can

be explanatory. However, as we have seen, he provides a possible answer to

question α without addressing question β, i.e. how do we account for the ex-

planatory role idealizations play in applied contexts? Let’s now see to what

would amount a potential answer to the latter question.

In his [Batterman, 2010], Robert Batterman observes that there is a un-

solved tension in Pincock’s account of idealizations. The tension comes from

the fact that Pincock wants to offer a ranking of idealizations, but he denies

that the goodness of a model can be weighed by introducing a global metric

or distance measure between the matching model and the (idealized) equa-
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tion model [Pincock, 2007b, p. 964-965]. In fact, Pincock is convinced that

a local measure of goodness, in terms of scale and accuracy acceptable to

scientists (as in the heat equation case), will do the work28.

Now, Pincock does propose only a local measure for ranking idealizations

in terms of their representational capacity and contextual factors, but with-

out an absolute measure it is not clear how different idealized models can be

ranked in term of their of goodness. For instance, according to some global

measure of the representational capacity of an idealization, it might be pos-

sible to say that an idealization is more representative than another, and this

would provide also a possible criterion to account for the explanatory role

of idealizations (for example, by considering that a less idealized model is

more explanatory because is more representative than another one). This,

according to Batterman, would provide Pincock with an answer to question

β29.

Batterman has observed how even Bueno and Colyvan’s answer to α in

terms of partial representation is to some extent analogous to Pincock’s an-

swer to the same question in terms of equation and matching model [Batterman, 2010,

p. 16]. Furthermore, Batterman observes, although their partial representa-

tion approach suggests a possible ranking of idealizations in terms of represen-

tativeness (the less idealized the model is, the more representational capacity

it has), Bueno and Colyvan remain silent about the degree of explanatori-

28Observe how, on this point, Pincock’s view seems to converges on Margaret Morrison’s
and Mary Morgan’s. According to Morrison and Morgan we will not be able to rank the
representational capacity of models because models can represent the target system in
different ways ([Morrison, 1999], [Morgan et al., 1999b]).

29In his discussion note of Batterman’s paper “On the Explanatory Role of Mathe-
matics in Empirical Science”, Pincock says that, differently from what Batterman thinks
[Batterman, 2010, p. 15], he does not want to offer a ranking of idealizations only in terms
of their representational goodness [Pincock, 2011a, p. 213]. Unfortunately, this discussion
note is very recent and the structure of this dissertation was already settled when I had
access to it. This is why I cannot provide here a full discussion of the various points raised
by Pincock. On the other hand, this does not affect the point I want to make in this
section, namely, that representation is not necessary to explanation (a point on which,
I think, Pincock would perfectly agree). Moreover, although it is not given in terms of
representational capacity alone (as Batterman claims), Pincock’s measure of the goodness
of an idealization is a local measure, and in this sense Batterman’s suggestion is relevant
to my discussion here.

269



ness of idealizations. A possible way to get out of this silence and provide

an answer to β would be for them to endorse the following view: partial

mappings, which are required because of idealizations, can play explanatory

roles because their partialness can be potentially eliminated thus obtaining a

complete representational mapping (a full isomorphism between between the

world and the mathematical model)30. A global measure of the explanatori-

ness of the idealization would then be provided by a measure which points

to the more or less idealized character of the model. In this framework, by

paying attention to the details that are ignored by the idealized models (what

is left out by the partial mapping), we would be able to say that an ideal-

ized model plays an explanatory role because we can (at least in principle)

complete the story. Hence, the more the idealized model approaches the full

story, less de-idealization it will require, the more explanatory power it will

have. However this idea, which would provide an answer to question β in

terms of ranking of idealizations, is not endorsed by Bueno and Colyvan31.

Furthermore, even Pincock does not seem to agree on this solution. In fact,

for him the explanatory power of abstract explanations comes exactly from

the detraction (rather than the addition) of certain structural details of the

target system:

In the Königsberg bridges case, the explanatory power is tied to the

simple way in which the model abstracts from the irrelevant details of

the target system. It throws out what is irrelevant and highlights what

is relevant. Crucially, what is relevant is the mathematical structure

found in the target system itself. [Pincock, 2011a, p. 213]

Finally, the same tension that Batterman attributes to Pincock’s account

of idealization, i.e. that his ranking of idealizations does not allow a compar-

ison of their explanatory power, is present for Bueno and Colyvan as well.

30As I will show in a moment, there are situations where this complete representation
is not possible to obtain. An example of such a situation, concerning the use of models in
social sciences, is given by Marco Panza in his [Panza, 2001].

31In a private communication Colyvan says to Batterman that, for him, the less degree
of idealization does not necessarily correspond to a more degree of explanatory power
[Batterman, 2010, p. 18].
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In other words, question β has not yet received an answer from Bueno and

Colyvan’s inferential conception and this answer (the answer in terms of de-

idealization) from Pincock’s structuralism. Pincock, in fact, has provided a

partial answer to question β. For him, at least in some cases, an idealization

can play an explanatory role because it helps to indicate what is irrelevant

and relevant to the phenomenon being explained. To illustrate his point he

considers the following example [Pincock, 2011a, p. 214]. Drop a rock in a

calm ocean. The rock will produce an irregular disturbance in the surface.

Now, as the disturbance propagates outwards, it becomes more regular as

the waves in the original superposition with a longer wavelength move more

quickly than the waves with a shorter wavelength. This is an instance of

wave dispersion. In order to explain this phenomenon, we first represent the

situation through the Navier-Stokes equations for fluids. This is our model

A. Next, we consider the limit where the ratio of the depth of the ocean to

the wavelength goes to infinity, thus obtaining a second model B. In model

B, which is our idealized model, we derive the following equation:

c =

√
gλ

2π
(5.3)

The equation expresses the velocity c of a wave with wavelength λ (g is

the gravitational acceleration). From this equation we see that the speed

of a wave will increase as its wavelength increases, and this is an essential

component to the explanation of our phenomenon. Moreover, the mathe-

matical passage from A to B shows that the specific depth of the ocean is

irrelevant as long as it exceeds a certain threshold. In fact, we can classify

waves as deep-water waves when the depth is greater than 0.28 times the

wavelength λ. Therefore equation 5.3 can explain the wave dispersion for all

such waves. In this case, the mapping step in which we find our model A is

not sufficient to explain the phenomenon, but according to Pincock it is the

mathematical passage from A to B (the limiting operation) which highlights

what is relevant or not to explain our phenomenon. This mathematical oper-

ation shows that the depth of the ocean is irrelevant if it surpasses a certain
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threshold, while the wavelength and the gravitational acceleration g are rel-

evant to the speed of the wave. In terms of what we have seen at the end

of the previous section, here false assumptions take us from an interpreted

part of a scientific representation (for instance, the depth of the ocean in-

terpreted in the model A) to an idealized representation in which this part

is no longer interpreted (in the idealized model B the depth of the ocean

does not figure). It is the mathematical passage from model A to model B

which removes the physical interpretation, picking out what is relevant and

can be used to explain the phenomenon. Consequently, at least in this case,

Pincock’s mapping account can accommodate the explanatory role played by

an idealization. More precisely, this example shows that a mapping account

can contribute to an account of the explanatory role played by idealizations

(thus providing an answer to question β). But this is only a partial answer,

as Pincock observes: “But, contrary to what Batterman suggests, I do not

claim that my account of idealization offers enough to make sense of the

explanatory power of scientific models, including those pertaining to phase

transitions and supernumerary bows. An idealization’s goodness, either in

the sense that it accomplishes the purposes of scientists or in the sense that

we know that it does so, may have little to do with its explanatory power”

[Pincock, 2011a, p. 213].

Now, let me shortly resume what Batterman considers a possible solu-

tion to the impasse (or partial impasse) mentioned above, i.e. the fact that

without an absolute measure for ranking idealizations it is not clear how dif-

ferent idealized models can be ranked in term of their of goodness. In order

to provide such a ranking and answer question β, the mapping partisans

might adopt a particular view on idealizations, namely, Ernan McMullin’s

“Galilean” understanding of idealizations [McMullin, 1985]32. According to

McMullin, idealizations are compatible with science to the extent that they

can be eliminated through further work that fills in the details ignored or

distorted in the idealized model. On this account, the idealized model can

32See also [Suárez, 1999] for a presentation of McMullin’s view.
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be de-idealized by adding the appropriate corrections, and the latter oper-

ation is possible because we have ‘tested’ our initial idealized model on the

actual system. In this way we would account for the initial idealized assump-

tions and simplifications, thus obtaining a more accurate representation of

the actual system. Discussing his “formal idealizations”, i.e. a particular

type of idealization in which we simplify factors for mathematical-conceptual

tractability (even if those factors are known to be relevant to the situation),

McMullin writes:

[...] models can be made more specific by eliminating simplifying as-

sumptions and ‘de-idealizing’, as it were. The model then serves as

the basis for a continuing research program. This technique will work

only if the original model idealizes the real structure of the object.

To the extent that it does, one would expect the technique to work.

If simplifications have been made in the course of formulating the

original model, once the operations of this model have been explored

and tested against experimental data, the model can be improved by

gradually adding back the complexities. [McMullin, 1985, p. 261]

By adopting this Galilean view on idealizations, then, the mapping ac-

counts partisans might classify idealizations on the various degrees under

which these idealizations can be de-idealized, and to a de-idealization there

would correspond a more representative picture of the system. However, as

we have seen above, neither Pincock nor Bueno and Colyvan adopt this con-

ception33.

33It might be observed that to adopt McMullin’s Galilean view on idealization would
commit those authors to a scientific realistic view, and their accounts would loose their
neutrality about realist and anti-realist issues (at least for what concerns the truth or
falsity of scientific theories). However, if we consider McMullin’s approach as a ‘tool’, a
technique of application [Suárez, 1999, p. 179], realism can be left apart and his conception
can be adopted intrumentally, without any precise realist restriction. The committment
of McMullin’s Galilean view of idealizations to scientific realism (and anti-realism) is ex-
tensively discussed in [Suárez, 1999]. Note also that, if the fact that the model improves
by making the customization suggested by the theory is used by McMullin in favour of the
truth of the theory, a similar move (towards the theory) is made by Lakatos by arguing that
such a customization must be seen under the light of the progressiveness of the research
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Unfortunately, Batterman observes, there is a further difficulty with ideal-

izations. In fact, there are also cases of idealizations which are not Galilean,

i.e. which cannot be de-idealized by observing how the model can be po-

tentially improved (Batterman call these idealizations ‘non-traditional ide-

alizations’ [Batterman, 2010, p. 17]). A very similar observation about the

impossibility of (always) improving the representation capacity of a model

by adding the “rest of the story” is made by Mauricio Suárez [Suárez, 1999]

and by Margaret Morrison and Mary Morgan [Morgan et al., 1999b]. While

Suárez observes that a “final representation” of a system might be impossible

to be found, Morrison and Morgan remark how sometimes (as in the case of

the various models of the nucleus) the addition of corrections to the original

model results in a new model that describes the original system in a way

which is inconsistent with the model of departure34:

Often, models are partial renderings and in such cases, we cannot al-

ways add corrections to a stable structure to increase the accuracy

of the representation. For example, models of the nucleus are able

to represent only a small part of its behaviour and sometimes repre-

sent nuclear structures in ways that we know are not accurate (e.g.

by ignoring certain quantum mechanical properties). In this case, the

addition of parameters results in a new model that presents a radically

programme in which the theory is embedded [Cartwright, 1999, p. 250-251] (see the previ-
ous quotation from McMullin, where he writes that a model can serve as a potential basis
for a ‘continuing research program’). In contrast to this tendency which considers theories
as having a primary importance, in her How the Laws of Physics Lie [Cartwright, 1983]
Nancy Cartwright claimed that this sort of corrections take you away from theory and
closer to the truth (the corrections to the model are ad verum corrections).

34In nuclear physics exist different models of nuclear structure, and each of them de-
scribes the nucleus in ways which are mutually incompatibles. Each model incorporates
significant and different features of the nucleus, depending on what property or behavior
of the nucleus is under investigation. For instance, the liquid drop model is useful in the
explanation of the nuclear fission and ignores quantum statistical by treating the nucleus
classically. The optical model serves as a basis for high energy scattering experiments.
The shell model, on the other hand, treats nucleons in nuclei as moving independently in
a central potential and takes into account the quantum behaviour, which is inexplicable
using the liquid drop model. Note how contextual factors play a decisive role in the choice
of the right model to be used. Nuclear models function as “epistemic resources for dealing
with specific kinds of nuclear phenomena” [Morrison, 1999, p. 61].
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different account of the nucleus and its behaviour. Hence in describing

nuclear processe, we are left with a number of models that are incon-

sistent with each other. [...] In some cases abstract representations

simply cannot be improved upon; but this in no way detracts from

their value. [Morgan et al., 1999b, p. 28]35

Batterman offers an example in which the mathematical idealization re-

sults from a limiting operation that relates one model to another (we will

see his example in the next chapter). This operation is supposed to play an

explanatory role, but it does not appeal to the static mirroring of the empir-

ical structure by mathematics. These kinds of non-traditional idealizations

play explanatory roles by involving operations and mathematical processes

rather than the representation of the system. As we will see later, with his

example Batterman wants to show that mapping accounts are unable to ac-

count for the role of non-traditional (limiting) idealizations in mathematical

explanation:

Surely something is right about the mapping account. In particular,

when it comes to representing physical structures, mathematical struc-

tures often provide useful models that abstract (as Pincock stresses)

from various explanatorily irrelevant physical details. My disagree-

ment, as will become evident, concerns the necessity of representation

for explanation. Instead, what is often explanatorily essential is the

mediating limiting relationship between the representative models. To

put this slightly differently, mapping accounts focus on “static” rela-

tionships between mathematical models and the world. My view is

that this misses, in many cases, what is explanatorily relevant about

idealizations; namely, that they often involve processes or limiting op-

erations [Batterman, 2010, p. 10]

Hence, if Batterman is right, we have to conclude that representation is not

necessary for explanation and more is needed. On this point Pincock agrees:

35See also [Morrison, 1998] and [Morrison, 1999] for similar claims.
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More generally, we should not expect an account of how mathematics

describes a target system to be able to provide a complete account of

how mathematics can be used to explain features of the target system.

This is because explanation usually requires more than merely accurate

description [Pincock, 2011a, p. 212-213. My italics]

This conclusion accords well with the observation that there are cases

of MEPP where the mathematical model provides an explanation of the be-

haviour of the system but the model functions as a ‘representative’, i.e. its el-

ements do not denote any element of the actual system (the model is, roughly

speaking, an ‘icon’ which we use to study the actual world), rather than a

‘representation’ of the physical system under study [Morgan et al., 1999b, p.

33]. For instance, R. I. G. Hughes provides a clear example of such a situation

[Hughes, 1999]. In that case the Ising model, which is employed in the study

of phenomena associated with diverse group of physical systems, provides a

significative understanding of critical point phenomena. However, the ele-

ments in the model do not ‘map’ any element of the physical system under

study (for instance, a magnet or a fluid studied at its critical temperature)36.

36In his [Hughes, 1999], Hughes provides a short but very clear illustration of the Ising
model, together with an historical background and some useful references for the study of
critical point physics. I will not pause here on the details, for what interests us is the fact
that it is recognized that the abstract Ising model provides a MEPP without representing
the system studied. In passing, let me note that, in order to accommodate the multiple
roles played by the model and its simulation, Hughes proposes a general account of repre-
sentation (the DDI account) which is extremely similar to Bueno and Colyvan’s inferential
conception (the diagram of the DDI account is an exact copy of Bueno and Colyvan’s
illustration of the inferential conception, although with different labels [Hughes, 1999,
p. 125]). The account takes the theoretical representation as having three components:
Denotation, Demonstration and Interpretation; Elements of the subject of the model (a
physical system showing a particular behavious) are denoted by elements of the model; the
model possesses an internal dynamic that allows us to demonstrate theoretical conclusions
(answers to specific questions); these conclusions can then be interpreted in terms of the
subject of the model. Bueno and Colyvan see their account as an extension of Hughes’
[Bueno et al., 2011, p. 372 endnote 18]. The difference with Bueno and Colyvan’s three
steps approach (Immersion, Derivation, Interpretation) resides in the fact that Hughes
explicitly note that “representation does not involve a similarity or resemblance between
the representation and its subject”, thus excluding the existence of some kind of mapping
between the actual phenomena and the model, and therefore emphasizing the indepen-
dence of the model from the target system [Hughes, 1999, p. 126]. I will not pursue this
comparison here. The DDI account is discussed in detail in [Hughes, 1997].
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Thus the model provides a MEPP without the representation of the system

(as we will see in the next chapter, the fact that some models do not need any

representation of the physical details of the systems studied is generally seen

as a consequence of the universal behaviour that those systems exhibit at or

near their critical temperature). In the next chapter we are going to see how

Batterman proposes a possible new approach to MEPP which is independent

of mapping accounts.

Finally, let me conclude this chapter with three general remarks. The first

concerns the pluralist position that the mapping account partisans adopt.

As we have seen, Pincock does not exclude the possibility of having other

types of explanations. Furthermore, he does not provide a single model of

MEPP but he focuses on some particular kinds of MEPP, abstract explana-

tions. The same pluralist view seems to be shared by Bueno and Colyvan

when they affirm that the inferential conception “provides one way to un-

derstand applications of mathematics” [Bueno et al., 2011, p. 370]. If other

ways of applying mathematics to the world are permitted, it seems that they

welcome the idea that there are different kinds of explanations and different

accounts of MEPP can be given as well (remember that Bueno and Coly-

van accept the idea that mathematics plays an explanatory role in science).

Now, the present discussion has showed how the incommensurability prob-

lem of explanation37 is not solved within the particular kind of approach the

mapping accounts partisans offer. And this because, by not proposing some

kind of global metric or criterion for ranking idealizations in terms of their

representational capacity, the mapping accounts are not able to compare and

to evaluate the explanatoriness of two structural explanations which involve

idealizations. The incommensurability problem of explanation recurs then at

37I stated the problem in the introduction to this second part. If we accept that does
not exist a general theory of MEPP, how can we characterize an explanation with respect
to another explanation, and more precisely how do we compare explanation E1 of phe-
nomenon P1 from explanation E2 of phenomenon P2, or even explanation E1 of P1 from
explanation E2 of the same physical fact P1? Is there a way to compare two MEPP, for
instance in terms of their explanatory power?
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a lower level, between the very same kinds of explanations38.

Second, observe how the interest of the mapping account partisans was

focused on mathematical entities (for instance, a graph in Christopher Pin-

cock’s example) and properties of mathematical entities (Eulerian or not-

Eulerian structure of the graph). This can be seen as a natural consequence

of the interest of these authors in the ontological debate, and more par-

ticularly in the indispensability debate. My previous discussions about the

linkage between Pincock’s account and the ontological commitment which

results from his position was intended to stress this point.

Third, in the final part of the previous chapter I raised the following

question: Does a more detailed model represent better the physical phe-

nomenon? Naturally, there are different answers to this question and nothing

like a shared idea. However, what is interesting for us is to observe that, in

formulating their accounts, some mapping account partisans start from the

idea that the more details of the phenomenon the model (mathematically)

mirrors, the better the model permits to understand that phenomenon. Bat-

terman calls this traditional approach to modelling the ‘details are better’

approach [Batterman, 2002b, p. 22]. The goal is to have the best fit (a kind

of convergence) between the mathematical representation and the physical

phenomenon, and then more details will be welcome in this sense39. However,

there is also another perspective on the table, and in particular a conception

of mathematical modelling according to which the fine details reduce (rather

than improve) our understanding of the phenomenon under study. The point

38As I have already noted, for Pincock this is not a problem, and precisely because he
does not want to offer a ranking of idealizations only in terms of representational capacity.

39Batterman considers Pincock as a partisan of the ‘details are better’ approach. How-
ever, again, this is not true. In my discussion of Pincock’s mapping account in the context
of idealizations, I have showed how he gives a particular importance to contextual factors
in the evaluation of the goodness of a representation. Moreover, in his recent discussion
note Pincock explicitly rejects Batterman’s reading of his position [Pincock, 2011a]. In his
account the degree of goodness of a representation is given also by contextual factors, and
in several cases there are details of the target system which are irrelevant to the represen-
tation itself. Pincock’s point is that representations are evaluated not only according to
their capacity to mirror the system, but also considering factors like the beliefs and goals
of the scientists who deploy the model [Pincock, 2011a].
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is relevant to our discussion because there are cases in which this operation of

“throwing away the details” can be regarded as providing explanatory power.

A study of these situations requires, according to Batterman, a totally new

approach with respect to that of mapping accounts.
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Chapter 6

Batterman’s asymptotic

explanations: painting, lack of

details and mathematical

operations

In the previous chapter I have presented one influential mapping account

of the application of mathematics, Pincock’s account, together with a par-

ticular kind of MEPP which is called by Pincock abstract explanation. Fur-

thermore, I showed that the partisans of the mapping account view seem to

endorse a pluralist view on MEPP, and that there are still open problems for

their mapping accounts in the context of MEPP. In particular, in the conclu-

sion of the chapter, I suggested that representation is not necessary for expla-

nation. This observation, which has been pointed out by Robert Batterman

in his [Batterman, 2010], does not conflict with a pluralist view but leaves us

with the necessity to say something more on cases of MEPP which are recog-

nized as such in scientific pratice but which mapping accounts are not able to

deal with. In particular, if there are cases of MEPP where we have explana-

tion without representation (one example will be provided in this chapter), we

want to account for the explanatory role played by mathematics in these situ-

ations (or at least a subset of these). Batterman’s view on explanation offers
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a possibility of this sort. It provides a way to account for the explanatory role

of some non-traditional idealizations (idealizations for which, as we have seen

in the previous chapter, it is not possible to tell any potential de-idealizing

story) which involve a limiting operation. In particular, Batterman proposes

the idea that, in these situations, the explanatory power comes from the

“systematic throwing away of various causal and physical details”. His view

is expressed in his book The Devil in the Details [Batterman, 2002a] and in

his papers [Batterman, 2002b], [Batterman, 2005a] and [Batterman, 2010].

There are several topics which come into play during the presentation

of Batterman’s view on MEPP. I introduced some of them in the previous

two chapters –for instance, idealization and mathematical modelling–, while

others –repeatability, universality– will require a short presentation in what

follows. My purpose here is to present his idea of asymptotic explanation

quite gradually, first by proposing a concrete example as an illustration of

one of Batterman’s core ideas and then passing to a more technical analy-

sis of his view. This is why, in the first section, I will concentrate on two

artistic artifacts (respectively, a painting and a reflection-fracturing surface

of hexagonal tiles). These œuvres have been explictly constructed in order to

produce a comprehensive idea of the work, or a particular effect, only when

the observer stands not too close to the artifact and does not concentrate on

its details. This short discussion (which, evidently, will be extremely rude

and uninteresting from an artistic point of view) will introduce an idea that

is central to Batterman’s approach to MEPP, which I will discuss in sec-

tion 6.2. Finally, in the third and conclusive section of this chapter, I will

concentrate on Batterman’s idea that his approach in terms of asymptotic

reasoning is well-suited to account for the explanatory role of non traditional

idealizations. In this section I will also point out some questions which are

(or are not) answered by Batterman’s account.
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6.1 More details you have, less comprehen-

sion will result

In order to introduce Pincock’s abstract explanations, we took a walk

across the bridges of Königsberg. This section starts with a visit to the

Metropolitan Museum of Art in New York. Consider two works which are

exposed in that museum: a study of the famous painting Un dimanche

aprés-midi à l’Ille de la Grande Jatte (henceforth La Grande Jatte), from

the French painter and initiator of the Neo-Impressionist movement Georges

Seurat (1859-1891), and the installation from the contemporary indian artist

Anish Kapoor, As Yet Untitled1.

La Grande Jatte is a composition made by tiny, detached strokes of pure

colour too small to be distinguished when looking at the entire work but mak-

ing the painting shimmer with brilliance (Figure 6.1). The pointillist tech-

nique is well-known: the dots of color become well blended when the viewer

looks at them from a suitable distance. Kapoor’s work is a big reflection-

fracturing surface of hexagonal tiles (Figure 6.2). At a certain distance, the

observer can distinguish his image without difficulty, but when too close to

the surface the image becomes very confused and it becomes harder for him

to appreciate the reflection of his body. This is because the numerous hexag-

onal mirrors will distort his image.

Although very different under various aspects (technique, material, aes-

thetic interests of the author, etc..), the two artifacts share something which

will be central to this chapter and to Batterman’s view on explanation: in

order to appreciate, or discern, the scene of La Grande Jatte and the image in

Kapoor’s installation, the observer which is placed in front of both artifacts

must perform the same operation, i.e. he must stay at some intermediate

1Seurat’s painting Un dimanche aprés-midi à l’Ille de la Grande Jatte is exposed at the
Art Institute of Chicago. Seurat’s study for that painting, exposed at the Metropolitan
Museum of Art in New York, is obtained through the same technique, which is what I take
as revelant to my discussion here. This is why, in referring to La Grande Jatte, I will not
make a distinction between Seurat’s study and the final version of the painting (in Figure
6.1 I have used the final version of the painting).
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Figure 6.1: Un dimanche aprés-midi à l’Ille de la Grande Jatte (Art Institute
of Chicago).

distance from the artifact and not focus on the details of it. Naturally, if we

try to look at La Grande Jatte from one kilometer of distance, we will not

be able to discern anything. As for every painting or artistic work, in fact,

there is an optimal distance or a range of distances which allow the viewer to

better discern and understand the work. However, in the case of La Grande

Jatte and As Yet Untitled, the artist has precisely introduced a sort of con-

straint (the pointillist technique and the fracturing surface of hexagonal tiles)

to obtain an explicit aesthetic effect on the observer. To take Seurat’s case,

the artist intention was to make the artifact discernible and appreciable in

all its aspects (for instance, relief and separation of forms, luminosity and

chromatic phenomena by using the effect of “lustre”2), only when looked at

without concentrating on the fine details3. Naturally, it could be noted that

2The effect of “lustre” is given by the perception of a partial fusion of colors. It holds
when the viewer is moving back from the canvas and he has not reached the distance in
which the colors are completely blended. The German physicist Heinrich-Wilhelm Dove
offered an explanation of the phenomenon in terms of the effect of two masses of light which
simultaneousely act on the eyes [Dove, 1853]. Probably Seurat knew Dove’s writings on
color [Homer, 1964, p. 143].

3On Seurat’s method of painting see the book Seurat and the Science of Painting
by William Innes Homer [Homer, 1964]. Seurat’s techniques of paintings were strongly
influenced by Charles Blanc’s Grammaire des Arts du Dessin (Paris, 1867). In discussing
the laws governing the vibration of colors, Blanc suggested a method of mixing colors
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Figure 6.2: Anish Kapoor, As Yet Untitled (Metropolitan Museum of Art).
Photos courtesy of Bill Holmes.

the observer might be interested in the details of the painting or in details of

the artifact. Thus it seems that here we are confronted with different senses,

or degrees, of “appreciability”. Obviously, it is very natural to feel free when

appreciating a canvas or a modern installation. Nevertheless, for the present

discussion I am assuming that the kind of understanding the observer is im-

mediately confronted with is that which would permit him to appreciate the

full scene offered by the painting, in the case of La Grande Jatte, and the

optically through small spots or stars of pigment, and this had a direct repercussion on
Seurat’s pointillist technique [Homer, 1964, p. 32]. It is also very interesting to note the
impact that the book Student’s Texbook of Color [Rood, 1881], written by the physicist
Odgen N. Rood and in which an explanation of physical phenomena relevant to the problem
of painting was given, had on Seurat and other painters. In the chapter “On the Mixture
of Colors”, Rood took into consideration the rotation of Maxwell’s discs at high speed
as to show how the mixture of light could be effected (see [Homer, 1964, p. 37] for an
illustration of the experiment). In discussing other techniques of mixing colored light,
Rood also illustrated one technique contrived by Dr. Jean Mile: small dots of color placed
next to each other, when viewed at a distance, yield the same effect as mixtures obtained
by rotating discs. As is evident, the latter observation was of paramount importance for
the Neo-Impressionist theory.
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full and clear reflection of his image in the case of Kapoor’s work. This, I

think, also fits well with the intentions of the two artists to produce a par-

ticular effect at a particular distance. In order to not get lost in the details,

the viewer must not place himself too close to the artifact. Moreover, by

doing this, the observer is performing some kind of operation. For instance,

the acts the viewer is requied to perform when in front of Seurat’s work are

well summarized by Homer in his book Seurat and the Science of Painting

[Homer, 1964]. He writes:

The effects of lustre described by Rood are immediately evident in

La Grande Jatte, where the degree of optical mixture of the various

colored elements depends on the viewer’s distance from the canvas.

If one stands one foot from the painting, for example, one can see

all of the individual constituent colors in any given small area; but

upon moving back gradually, these hues begin to fuse and coalesce

until one reaches a point about twenty feet from the canvas, where

fusion is complete and the individual colored strokes are no longer

discernible. But before this point is reached, as Dove pointed out,

effects of partial fusion or “lustre” become evident, and it is just this

quality that Fénéon observed. [Homer, 1964, p. 143. My emphasis]

The motivation for this artistic discussion will be more explicit in the

next section, which introduces Batterman’s view on MEPP.

6.2 Asymptotic explanation: from art to sci-

ence

What is the moral of the previous section? Basically, we have learned

that there are cases in which the details of an artifact are mostly irrelevant

to our interests, and in particular for our understanding of the artifact itself4.

4Where ‘understanding’ must be intended in the broad sense I proposed in the previous
section: the appreciation of the full scene in La Grande Jatte and the appreciation of the
reflection of our body in the case of As Yet Untitled. I think that this understanding
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Moreover, to have this understanding we have to perform a specific operation

(we have to move away from the artifact). Now, if we identify the artifact with

a specific physical phenomenon, and we substitute the word understanding

with “scientific understanding”, we find one of Batterman’s core ideas:

The idea that scientific understanding often requires methods which

eliminate detail and, in some sense, precision, is a theme that runs

throughtout this book. Suppose we are interested in explaining some

physical phenomenon governed by a particular physical theory. That

theory may say a lot about the nature of the phenomenon: the na-

ture of its evolution, and what sorts of details–for example initial and

boundary conditions– are required to “solve” the governing equations,

and so on. One might think that the theory will therefore enable us to

account for the phenomenon through straightforward derivation from

the appropriate initial data, given the governing equation(s). How-

ever, I will show that, with respect to other critically important why-

questions, many theories are explanatory deficient. [...] The kind of

explanatory questions for which the detailed accounts simply provide

explanatory “noise” and for which asymptotic methods fill in the ex-

planatory lacunae are questions about the existence of patterns noted

in nature. [Batterman, 2002a, p. 3-4]

From the previous quotation, various considerations emerge. First of all,

Batterman focuses on particular explanatory questions which concern the

existence of patterns noted in nature. He addresses, as we are going to see,

only a particular kind of explanation, and accepts the existence of other

kinds of explanations as well. Therefore Batterman shares a pluralist view

on explanation with the supporters of mapping accounts seen in the previous

chapter, i.e. he focuses only on a specific kind of explanation and he does

offers us a general understanding of the artifacts. In the case of La Grande Jatte this is
straightforward. When we discern the full scene we can appreciate various aspects of the
canvas and of Seurat’s technique. In the case of As Yet Untitled, the appreciation of our
image gives us a sort of ‘coordinate system’ which is essential to appreciate Kapoor’s work
and his technique.
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not propose any encompassing model5. Second, Batterman observes that

there are some methods which permit us to offer an explanatory answer to

specific questions about the existence of patterns noted in nature. These

methods, which “eliminate detail and, in some sense, precision”, are called

by Batterman asymptotic methods. Let me anticipate that, for Batterman,

these methods involve a specific form of reasoning, which Batterman calls

asymptotic reasoning [Batterman, 2002b, p. 3].

In the previous section I stressed the importance of the operation involved

in our understanding of the artifact. More precisely, the observer had to move

away from the canvas in order to reach an understanding of the artifact.

That operation had the precise effect of “throwing away the details”. To

parallel our artistic example with Batterman’s ideas, we find that it is exactly

through asymptotic methods that the operation of “eliminate detail and, in

some sense, precision” is performed. In these methods we use a particular

form of reasoning, namely, asymptotic reasoning. As we will see shortly,

Batterman considers mathematical limiting operations as paradigm instances

of asymptotic reasoning [Batterman, 2002a, p. 16].

But what about explanation? Batterman calls asymptotic explanation

that kind of explanation which utilizes such specific kind of reasoning:

[...] asymptotic explanations gain their explanatory power by the sys-

tematic throwing away of various causal and physical details [Batterman, 2010,

p. 3]

I will disentangle the notions of asymptotic method, asymptotic reasoning

and asymptotic explanation in a moment, by exploring one of Batterman’s

examples. Before this step, let me introduce some terminology which is es-

sential for what follows.

In certain cases, physical systems which have different molecular constitu-

tion display the same type of behavior. The patterns of behavior expressed

by such physical systems are called universal. Universality is a feature of

5Batterman has confirmed to me his pluralism in a private conversation.
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those patterns. For instance, in thermodynamics, fluids and magnets display

an identical behavior at their respective critical points (this is an experimen-

tal fact), thus we speak of universality of critical phenomena6. In this case, as

we are going to see, the same dimensionless number called ‘critical exponent’

characterizes the behavior of the system at criticality. Different systems (for

instance, different fluids) have the same critical exponent.

To take another example of universality, consider many pendula with bobs

of different masses, rods of different lengths and composed of different materi-

als. In this case, the microstructural differences in the bobs or in the rods do

not affect the general result that (for small oscillations) the period is directly

proportional to the square root of the rod from which the bob is hanging. In

other words, even if the micro-details of the pendula are extremely different,

the following (mathematical) relation holds:

θ = 2π

√
l

g
(6.1)

Universal phenomena have a very important feature: under perturbation

of the microscopic details, their mathematical representation (the model) re-

mains stable7. This is a mark that those phenomena (for instance, critical

phenomena) are repeatable or reproducible. We say then that a phenomenon,

or a pattern of behavior, has the feature of repeatability if it shows at vari-

ous times and places the same macro-level phenomenology even if there are

differences in the various microscopic models of it (as in the case of the pen-

dula).

To return to our artistic example, it makes no difference if one point of

color of La Grande Jatte is 2 or 2.03 millimeters far from another point. When

the viewer reaches a distance of about twenty feet from the canvas, where

the fusion of colors is complete, the micro-disposition of points is irrelevant

6The mathematical physicist Michael Berry has pointed out that “The most familiar
example [of universality] from physics involves thermodynamics near critical points (of,
say, fluids and magnets)” [Berry, 1987, p. 185].

7The stability under perturbation of the microscopic details is called structural stability.
See [Rueger, 2000] for a discussion of structural stability.
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to the visual result8. Now, keep in mind that Batterman is not interested in

particular events but in repeatable patterns of behavior, and these patterns

of behavior are what he considers ‘phenomena’ [Batterman, 2002b, p. 26-27].

But how do our mathematical representations of the system remain stable

under changes of the microscopic details? Batterman observes that this is

possible through the taking of limits:

One important way mathematics allows us to do this [to permit struc-

tural stability] is through the taking of limits. Limits are a means by

which various details can be thrown away. (For instance, in taking

the thermodynamic limit in the context of explaining fluid behavior,

we eliminate the need to keep track of individual molecules and we re-

move details about the boundaries of the container in which the fluid

finds itself, etc.) [Batterman, 2010, p. 23]

As we are going to see, the discussion about limits and limiting opera-

tions will bring the debate about idealization and modelling back. In partic-

ular, concerning mathematical modelling, at the end of the previous chapter

I traced a distinction between a representative conception of modelling, the

“details are better view”[Batterman, 2002b], and a second view which consid-

ers that the fact to mirror too much details into a model detracts from an un-

derstanding of the phenomenon under scrutiny. The partisans of the second

view maintain that the good model is a minimal model, i.e. a model which

“most economically caricatures the essential physics” [Goldenfeld, 1992, p.

33]. Minimal models are then good candidates for studying the universality

8Naturally, my observation implicitly assumes that there is some threshold in the mi-
croscopic disposition of points above which the global effect of color perceived by the
viewer is affected. Furthermore, it is the human eye which perceives the global fusion, as
in the case of the pendula it is the scientist who is investigating a particular phenomenon.
What is relevant here is that the global effect of color at that distance is exactly what the
artist wanted to produce, as in the case of pendula the range of small oscillation is the
exact ‘distance’ which permits the scientist to appreciate some particular behavior of the
physical system. Here I will not push further the analogy. The basic idea is that at differ-
ent scales (or distances) we appreciate different phenomena. Michael Berry has recently
drawn attention to this point during his talk “Emergence and asymptotics in physics:
how one theory can live inside another” (Conference on Mathematical and Geometrical
Explanations in Physics, Bristol, December 2009).
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of patterns of behavior belonging to different physical systems. As evident,

Batterman’s considerations will fit well in this latter direction.

We have seen that Batterman considers repeatable patterns of behavior as

explananda. Then what is the ‘fundamental explanatory question’ he wants

to answer?

We need to understand why we have these regularities and invariances.

We need, that is, to ask for an explanation of those very regularities

and invariances. This is the fundamental explanatory question. The

other accounts don’t ask that question, in that they typically treat

those regularities and invariances as given. The answer to this fun-

damental question necessarily will involve a demonstration of the sta-

bility of the phenomenon or pattern under changes in various details.

[Batterman, 2010, p. 24]

Let’s now see the previous terminology in action in one of Batterman’s

examples.

6.2.1 Asymptotic explanation of the universality of crit-

ical phenomena

The most exploited (and perhaps the most elucidative) of Batterman’s

examples concerns the explanation given in consensed matter physics for the

universality of critical phenomena9.

[Universality of critical phenomena] Consider the temperature-pressure

diagram for a typical fluid, in Figure 6.3, where the bold lines represent

thermodynamical states where two phases of the fluid can coexist (coexistence

regions). The lines also represent states in which the system is subject to a

first order phase transition10. For instance, along the line AC we find that

9The example is illustrated again and again in [Batterman, 2002a], [Batterman, 2002b]
and [Batterman, 2010].

10Phase transitions are usually divided into two classes according to the behavior of
derivatives of the Gibbs free energy. Phase transitions which exhibit a discontinuity in the
first derivative of the free energy with respect to a thermodynamic variable are called dis-

290



Figure 6.3: Temperature-pressure diagram for a fluid [Batterman, 2010, p.
6].

the fluid exists in both its vapour and liquid phase (it’s the water boiling in a

container!). In a coexistence region the temperature, pressure, and chemical

potentials of each type of particle must be equal; hence, as we move along the

coexistence curve, the changes in the chemical potentials and temperature

of the two phases must be equal. Triple point A marks conditions at which

three different phases can coexist. For example, the water phase diagram

has a triple point corresponding to the single temperature and pressure at

which solid, liquid, and vapor phases can coexist in a stable equilibrium.

Nevertheless at point C, called critical point, the system has a totally different

behavior. A critical temperature Tc corresponds to that point. For example,

in the case of water, the critical point occurs at around 647 ◦K (374 ◦C or

continuous or phase transitions of first order. The various solid/liquid/gas transitions are
classified as first-order transitions because they involve a discontinuous change in density,
which is the first derivative of the free energy with respect to the chemical potential. First-
order phase transitions are also connected with an entropy discontinuity. On the other
hand, second-order phase transitions are accompanied by a continuous change of state,
i.e. the first derivative of the free energy is continuous, but they exhibit discontinuity in
the second (or higher-order) derivative of the free energy. In higher-order transitions the
entropy S is continuous. See [Reichl, 1998], especially chapter 3, for an introduction to
thermodynamics of phase transitions.
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705 ◦F), and at this temperature:

the distinction between water and steam disappears, and the whole

boiling phenomenon vanishes. [...] one finds bubbles of steam and

drops of water intermixed at all size scales from macroscopic, visible

sizes down to atomic scales [Wilson, 1982]

Between Ta and Tc every passage from the vapor phase to the liquid phase

(or the other way around) crosses the line AC and then the system goes into

a state where the vapor and liquid phases coexist. But above the critical tem-

perature (T > Tc) the system can go from its vapor phase to its liquid phase

without going into this coexistence regime (by following the path γ in Figure

6.3)11. In other words, there is a qualitative change in the behavior of the

system, and this qualitative distinction is ‘mathematically’ represented by a

singularity in the function (free energy) which characterizes the state of the

system. For T = Tc the liquid-vapor transition (as well as the paramagnetic-

ferromagnetic phase transition in the case of magnets) is of second order, and

then continuous.

At critical point C, the same behavior of systems with different micro-

scopic structure (for instance, different kinds of fluids or magnets) is described

by a particular dimensioneless number β called ‘critical exponent’. Surpris-

ingly, the critical exponent has the very same value for all those different

systems (this is an experimental result). This means that, even if the value

of Tc changes depending on the system considered, the identical and universal

behavior of those systems at criticality is described by the same β.

Now, consider what Batterman takes as explanandum: the similar be-

havior of fluids of different molecular constitution when at their respective

critical points (universality of critical phenomena). How is condensed matter

physics able to account for this remarkable fact? The key strategy to “ex-

plain” this fact is provided by the so called “renormalization group” (RG). I

will introduce the RG strategy after a short presentation of how the critical

11To obtain the path γ: increase temperature T beyond Tc, then increase pressure P
beyond Pc, and finally decrease T below Tc.
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Figure 6.4: Diagram density-temperature and coexistence curve for a fluid
[Batterman, 2010, p. 7].

exponent β is found12.

In order to analyze the rearrangements of the structure of the fluid at its

critical point we introduce a quantity Ψ called “order parameter”. The order

parameter was firstly proposed by Lev Landau in his 1937 influential study

[Landau, 1937]. For a fluid, Ψ is the difference between the liquid and vapor

densities when in the coexistent phases (along the line AC in Figure 6.3)13:

Ψ = |ρliq − ρvap| (6.2)

The order parameter thus represents the main qualitative difference be-

tween the various phases. Above Tc, outside the region of liquid-vapor coex-

istence (region of vertical lines in Figure 6.4), Ψ vanishes for the liquid-gas

phase transition, since a distinction between both phases is no longer possi-

ble. However, if we observe that the order parameter is small in the vicinity

12The present discussion, far from being an exhaustive presentation of the thermodynam-
ics of systems at critical points, is intended to illustrate Batterman’s example of asymptotic
explanations. This is why I will not report all the technical details. For a comprehensive
treatment of the critical phenomena topic see [Pfeuty et al., 1977] or [Amit, 1978].

13For a magnet the order parameter is the net magnetization M , or magnetic moment,
which measures the cooperative alignment of the atomic or molecular dipole moments.
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of the critical point, it can serve as expansion parameter in the description of

critical phenomena. How does the order parameter vanish? In other words,

what is the shape of the coexistence curve near Tc? We can introduce a

distance, the “reduced temperature” t, which allows us to say how far the

system is from criticality:

t = |T − Tc
Tc
| (6.3)

We now make the assumption (experimentally supported) that, as T ap-

proaches Tc from below, the order parameter vanishes as some power β of

t14:

Ψ = |ρliq − ρvap| ∝ |t|β (6.4)

Then the critical exponent β characterizes the shape of the coexistence

curve near Tc (β is also called the degree of the coexistence curve). Experi-

mentally, β is found to be a number close to 0.33 15. All distinct fluids (and,

again, even magnets with net magnetization as order parameter) exhibit an

extremely similar shape in their coexistence curve near Tc.

Now, the critical exponent can be computed starting from mean field

theories such as the Van Der Waals theory or the Ginzburg-Landau theory.

The common feature of these theories is that they can be derived assuming

that the particles move in a mean field due to all other particles. However,

the mean field theories do not give a correct result for the critical exponent,

14In the case of magnets, where the order parameter is the net magnetization M , the
magnetization is positive below temperature Tc (which, for magnets, is called the Curie
Temperature) and zero above Tc. At Tc we have the transition between the paramagnetic
and the ferromagnetic states of magnetic materials. As for fluids, approaching Tc the net
magnetization vanishes as some power β of t: M ∝ |t|β .

15Note that in textbooks of thermodynamics and statistical mechanics the experimental
value of β for fluids and ferromagnets is reported to be“in the neighborhood of 0.3 and 0.4”
[Callen, 1985, p. 267], depending of the system under examination. For instance, in the
case of gasses, β of He3 is found to be 0.361, while β of Ar is 0.362 and that of CO2 0.34
[Greiner et al., 1995, p. 425]. I will return to this point in the final part of the chapter.
Furthermore, it seems to me important to report a quite obvious, but extremely important,
observation: “the experimental determination of critical indices is very difficult, and may
contain large errors” [Greiner et al., 1995, p. 425].
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i.e. they are quantitatively incorrect. For instance, by using the Van Der

Waals equation for a gas we obtain that the degree of the coexistence curve

is β = 1/2 (see [Reichl, 1998, p. 139-141] for the exact calculation). So, in

order to provide an answer to the question“Why does Ψ of different fluids F ′,

F ′′, ... scale as a specific power law |t|β?”, and thus account for the universal-

ity claim which stands behind this question, condensed matter physics makes

use of the Renormalization Group Theory (RGT). RGT is a powerful analyt-

ical theory formulated in general terms in 1971 by the high-energy theorist

Kenneth Wilson [Wilson, 1971]16. The essential contribution of RGT to the

study of the universality of critical phenomena is well expressed by Greiner,

Neise and Stöcker in their book Thermodynamics and Statistical Mechanics :

[...] phase transitions of second order show an approximately universal

behavior which does not depend on the details of the interaction, but

only on a few global properties of the system, like dimension, number

of components, and range of the interaction. Only after renormaliza-

tion group theory was developed, which also gained large importance

in quantum field theory, was it possible to establish this universality

hypothesis from the theoretical point of view. [Greiner et al., 1995, p.

428]

Batterman claims that the RG methods are able to provide an explanation

(and then a MEPP) of the universability for the particular scaling of order pa-

rameters of different fluids ([Batterman, 2002a, p. 39] and [Batterman, 2010,

p. 8])17. Observe that the same Kenneth Wilson, in his Nobel lecture The

Renormalization Group and Critical Phenomena (8 December 1982), gives

particular emphasis to the important role played by RGT in the explanation

16Even before the formal and mathematically controlled formulation of the renormaliza-
tion group techniques became available, the theoretical physicist Leo Kadanoff provided a
conceptual basis for the scaling behavior. His approach, which fixed the standard language
of critical phenomena, gave rise to the ideas of renormalization [Wilson, 1971].

17Observe that RGT is a mathematical theory. Consequently, to accept that it can
explain a particular pattern of behavior of a physical system (a phenomenon) amounts to
saying that we considering a case of MEPP.
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of the universal behavior of different systems. Illustrating the RG approach

to critical phenomena, he says:

As L [the correlation length] becomes large the free energy FL ap-

proaches a fixed point of the transformation, and thereby becomes

independent of details of the system at the atomic level. This leads

to an explanation of the universality of critical behavior for different

kinds of systems at the atomic level. Liquid-gas transitions, magnetic

transitions, alloy transitions, etc. all show the same critical exponents

experimentally; theoretically this can be understood from the hypoth-

esis that the same “fixed point” interaction describes all these systems.

[Wilson, 1982, My emphasis]

Even if the technical details of RGT lie beyond the scope of this chapter,

let now see what Renormalization Group (RG) strategy amounts to and how

it can play this explanatory role18. After this, we will see how Batterman

accounts for the explanatory role played by the RG strategy.

[RG strategy ] We can represent every (distinct) system by a function

called Hamiltonian. The Hamiltonian characterizes the interactions between

the system’s components and the effect of an external field. The correlations

between the different components of a system (the particles of our fluid, for

instance) are usually short-ranged far from the critical point, i.e. in these

regions the interaction is significant only between nearby components. As

we approach the critical point, however, the system anticipates its new be-

havior by making “adjustments” on a microscopic scale and increasing the

“length” of the correlations19. More precisely, at critical points, the length of

the correlations diverges to infinity, thus making the mathematical problem

intractable. Fortunately, RG analysis provides a method to skip this problem

and compute the desired result for β.

18An extensive formal discussion of the technical details of the RG strategy, together
with some concrete examples of RG analysis, are provided in chapter 8 of Reichl’s book A
Modern Course in Statistical Physics [Reichl, 1998].

19Despite the fact that the interactions between particles remain local.
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The main idea is to switch from the intractable problem (analytically in-

tractable Hamiltonian) to a tractable problem (analytically tractable Hamil-

tonian) preserving the functional form of the initial Hamiltonian and the fact

that it describes a system with that particular behavior. To assure that the

transformed Hamiltonian describes a system with the same behavior, thermo-

dynamics parameters are properly adjusted (renormalized). More precisely,

the strategy of the RG analysis is based on a systematic rescaling of the effec-

tive Hamiltonian which describes the system near the critical point. As the

correlation length increases in proximity of a critical point, one repeatedly

integrates out the effect of shorter-ranged correlations and requires that the

Hamiltonian retain the same functional form. During the process the num-

ber of coupled components (the degrees of freedom) is reduced within the

correlation length. This leads to nonlinear recursion relations between the

effective coupling constants on different length scales. The critical point (for

which the correlation range goes to infinite) corresponds to a fixed point of

these recursion relations (as the number of transformation goes to infinity).

This sequence of transformations, say T , is what is called the renormalization

group20. At this point, the transformation matrix which yields the recursion

relation can be linearized about the fixed points and the eigenvalues of the

matrix can be expressed in terms of the critical exponents. Therefore, if we

can find the eigenvalues, the problem is solved. Through the RG procedure

different Hamiltonians flow to the same fixed point, which is quantitatively

identified and accords with experimental data. Very importantly, it is in the

thermodynamic limit (limit in which the number of particle of the system

approaches infinity) that the fixed point of the recursion relation converges

to the exact critical temperature [Lewis, 1977]. To take the thermodynam-

ical limit amounts to taking the volume and number of particles of a bulk

system to infinity, while keeping the density finite. Finally, RGT is able to

tell us that the critical behavior of different systems is characterized by the

same critical exponents.

20In passing, let me note that transformation T only has properties of a semigroup, and
not of group.

297



Note that the RG procedure considers the microscopic details (degrees of

freedom) of the different systems irrelevant :

This onset of long-range correlated behavior is the key to the sta-

tistical mechanical (or “renormalization group”) solution to the prob-

lem. Because large regions are so closely correlated, the details of

the particular atomic structure of the specific material become of sec-

ondary importance! The atomic structure is so masked by the long-

range correlation that large families of materials behave similarly–a

phenomenon known as “universality,” to which we shall return subse-

quently. [Callen, 1985, p. 265]

The microscopic details, irrelevant for the macroscopic phenomenology,

are thrown away by the RG analysis. Therefore, RG analysis shows what

are the details irrelevant for the system’s behavior at criticality. Moreover, it

allows for the determination of the physical details which are relevant for this

behavior. In fact, in RG analysis, the critical exponent shows a dependence

(only) upon the spatial dimension of the system and on the symmetrical

properties of the order parameter21:

Renormalization group theory demonstrates that the numerical values

of the exponents of large classes of materials are identical; the values

are determined primarily by the dimensionality of the system and by

the dimensionality of the order parameter [Callen, 1985, p. 274]

[...] a universality, in the sense of independence of any microscopic

details, has survived the scrutiny of recent investigations, both exper-

imental and calculational. As we shall see, this type of universality

can be understood within the theory, once fluctuations are treated

properly. On the other hand, the exponents show a very marked de-

pendence on symmetry and on the number of space dimensions. What

21For instance, the computation of critical exponents for a triangular planar lattice will
give a value of β different from that of three-dimensional systems such as fluids.
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is meant here by symmetry is the internal spin symmetry. Thus, an

Ising model has a discrete symmetry of two elements – changing the

sign of all spins [Amit, 1978, p. 8]

RG analysis is then able to tell us what (and why) various properties are

(or are not) relevant for the critical behavior. Therefore it is able to tell us

why the same exponent describes the critical behavior of different fluids (flu-

ids which have a different miscroscopic composition). This is how it provides

an explanation for the critical behavior of different fluids.

Now, let me put in order all these ‘details’. First, RG analysis investi-

gates the asymptotic regime (where the correlation length diverge and many

molecules find themselves correlated), and it is exactly by going in this lim-

iting regime that it makes possible to account for the universality of critical

behavior. In doing that, RG analysis systematically throws away the micro-

scopical details of the system. Therefore, since for Batterman asymptotic

methods are methods which “eliminate detail and, in some sense, precision”,

RG analysis is our asymptotic method. Second, remember that there is an

essential ingredient which permits to explore the limiting regime and find the

exact critical temperature, and this ingredient is the thermodynamic limit.

In fact, it is in the thermodynamic limit that the fixed point of the recur-

sion relation converges to the exact critical temperature. Batterman defines

asymptotic reasoning as “the taking of limits as a means to simplify, and the

study of the nature of these limits” [Batterman, 2002a, p. 132]. Moreover, he

writes:

Limits are a means by which various details can be thrown away. (For

instance, in taking the thermodynamic limit in the context of explain-

ing fluid behavior, we eliminate the need to keep track of individual

molecules and we remove details about the boundaries of the container

in which the fluid finds itself.) [...] in taking such limits we are often

led to focus on mathematical singularities that can emerge in those

limits. The divergence of the correlation length in the renormalization

group explanation of the universality of critical phenomena is one such
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emergent singularity [Batterman, 2010, p. 20]

In our example, then, the asymptotic reasoning involved is the taking of

the thermodynamical limit as a means to throw away the details22.

Finally, the explanation of the critical phenomena given in terms of the

RG analysis is for Batterman a case of asymptotic explanation. This ex-

planation, according to him, gains its explanatory power by the systematic

throwing away of various causal and physical details, namely, by the use of

an aymptotic method (RG analysis in our example).

6.3 Managing (explanatory) idealizations and

some criticisms

We have seen how Batterman proposes to capture the explanatory strat-

egy (asymptotic explanation) for cases where the phenomena are patterns of

behavior. Asymptotic explanation is, as Batterman points out, a“form of ex-

planation largerly missed by current philosophical conceptions”[Batterman, 2002a,

p. 37].

According to him, for this particular form of explanation it is the mathe-

matical operation (the mathematical operation which permits the passage to

the limiting regime, as in the example of critical phenomena), rather than a

mathematical entity or a property of a mathematical entity, which is essen-

tial to the explanation. Furthermore, I have already mentioned Batterman’s

claim that his approach in terms of asymptotic reasoning is well-suited to

account for the explanatory role of non traditional idealizations. In this final

22Let me note that, although Batterman uses the expression “asymptotic reasoning”
throughout his [Batterman, 2002a], in his recent [Batterman, 2010] the same expression
does not appear. And this although he discusses the very same example (universality
of critical phenomena). Nevertheless, in his [Batterman, 2002a] he explicitly writes that
asymptotic reasoning is the reasoning involved in asymptotic methods: “I call these meth-
ods asymptotic method and the type(s) of reasoning they involve asymptotic reasoning”
[Batterman, 2002a, p. 13]. Therefore, in my analysis of his account, I retain this as his
definition of asymptotic reasoning.
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section, I will show how Batterman justifies this latter claim and I will add

some general considerations to what has been presented in this chapter.

6.3.1 Idealizations, operations, singularities and mini-

mal models

Basically, we have already seen how Batterman accounts for the explana-

tory role played by non traditional idealizations. Now it is just a matter of

making his claim more explicit, by regarding the ‘details’ of his account and

his example of critical behavior.

In the example given in the previous section, the renormalization group

invokes the thermodynamic limit. This limit is, evidently, false and there-

fore must be considered as an idealization (better, a limiting idealization)

[Liu, 2001, p. S332]23. Batterman points out that, while this idealization is

essential to the explanation (without the thermodynamic hypotesis RG anal-

ysis does not work for critical phenomena [Liu, 2001]), it is not of the kind of

23More precisely, the thermodynamic limit is the limit in which the number of parti-
cles of the system N −→ ∞, the volume V −→ ∞ with the constraint that the density
N
V −→ constant. To take this limit usually amounts to saying that statistical mechanics
reduces to thermodynamics. I say “usually” because for the present example of critical
phenomena we take the thermodynamic limit but we do not pass from statistical mechan-
ics to thermodynamics -for instance, at critical point various continuum thermodynamic
quantities such as the compressibility k of the fluid diverge and become infinite. Singu-
larity equals breakdown of the continuum limit. No reduction holds at critical points.
See [Batterman, 2005a] for the technical argument. This conception of reduction, used
by physicists and different from the sense of reduction used by philosophers (for instance,
reduction used “à la Nagel” [Nagel, 1961]: T ′ reduces to T if the laws of T ′ are derivable
from the laws of T ), can be represented as follows: limε→0 Tf = Tc, where Tf is statis-
tical mechanics, Tc is thermodynamics, and ε = 1

N . For a justification of the claim that
asymptotic reasoning is also important in the investigation of intra-theoretic-relations and
theory-reduction see [Batterman, 2002a]. Just to sketch the general moral of his discussion:
while traditional philosophical accounts of reduction and physicists’ sense of reduction are
not able to account for emergent properties we find in the asymptotic limit (such as critical
phenomena), asymptotic reasoning plays an interpretative role for such situations and pro-
vides a better instrument of investigation. The impossibility for such senses of reduction
of accounting for those phenomena comes from the fact that neither Tf nor Tc are able
to account for the specific emergent phenomenology within their theoretical framework.
On the distinction between the physicists’ and the philosophers’ sense of reduction, see
[Nickles, 1973].
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the Galileian idealization for which it is possible to tell a sort of de-idealizing

story. More precisely, this idealization plays an essential role in the explana-

tion involving operations and processes without involving any kind of repre-

sentation of the system. The mathematical idealization results from a limit-

ing operation that relates one model (the finite statistical mechanical model)

to another (the continuum thermodynamical model) without appealling to

the static mirroring of the empirical structure. This is how Batterman’s

view can account for the explanatory role of non-traditional idealizations.

Moreover, the focus here is on operations (mathematical limiting operations)

rather than on mathematical entities. This would potentially put an end to

the dependence of the explanation-debate from the indispensability-arena, or

better give a fresh and innovative twist to it:

But the main point here is that if I am right, and taking the ther-

modynamic limit is an explanatory essential mathematical operation,

then this is a case in which, while we have a genuine mathematical

explanation of physical phenomenon, there is no appeal to the exis-

tence of mathematical entities or their properties. Instead, the appeal

is to a mathematical idealization resulting from a limit operation that

relates one model (the finite statistical mechanical model) to another

(the continuum thermodynamic model) [Batterman, 2010, p. 8]

In contrast to explanations that appeal to mathematical entities (or

properties of such entities) to explain physical phenomena, there are

explanations which, while mathematical, do not make reference to

such objects. Rather, these explanations appeal to (or better “in-

volve”) mathematical operations [Batterman, 2010, p. 5]

These considerations permit me to point to three aspects of Batterman’s

account. First, Batterman draws attention to the importance asymptotic

reasoning has in underlining the crucial role of singularities in those particular

forms of MEPP. In the previous example asymptotic reasoning, i.e. the taking

of limits, leads to the study of a fixed point (corresponding to the behavior of

the system at critical point). Singularities are often associated in physics with
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the breakdown of a particular pattern of regularity. In the case of the RG

theory applied to critical phenomena analysis, the study of singular points

(fixed point of the transformation) is used to study the regular behavior of

the system as it approaches criticality (where the regularity is broken).

[...] in taking such limits we are often led to focus on mathemati-

cal singularities that can emerge in those limits. The divergence of

the correlation length in the renormalization group explanation of the

universality of critical phenomena is one such emergent singularity.

[Batterman, 2010, p. 23]

Second, observe how the “details-are-better” approach of mathematical

modelling is not useful in the study of the behavior of the system at criti-

cality. The model for critical behavior is a minimal model, i.e. an idealized

caricature of the system under study24. It’s only through this caricature that

the universal (and repeatable) pattern of behavior is accounted for. There-

fore Batterman endorses this “minimal” conception of modelling, at least for

those sorts of repeatible patterns of behavior we encounter in science:

Minimal models play crucial computational and explanatory roles. [...]

Let us return to the question raised at the beginning: is there a kind of

methodological priority among the different approaches to modelling

in science? The answer, I believe, is ‘yes’. Given that our primary in-

terest is to understand repeatable phenomenological behavior, it seems

we ought first to search for minimal, exactly solved models of that be-

havior. The asymptotic methods involved in justifying the use of such

models to explain universality themselves provide the understanding

of this type of repeatable phenomena. [Batterman, 2002b, p. 37]

24Let me observe that Batterman does not trace a clear dinstinction between the word
“model” as used in “thermodynamic/statistical model” and the same word used in “model
for critical behavior”. However, it is clear that they refer to different things. Intuitively,
Batterman uses the word “model” in the expression “model for critical behavior” to refer
to the mathematical form of the transformed Hamiltonian, which models the physical
situation without mirroring the details of the system and thus represents a“minimal model”
(see, for instance, [Batterman, 2002b, p. 25]).
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Finally, it should be noted that there are interesting similarities between

Batterman’s view and Pincock’s. For instance, both consider that the math-

ematical limiting operation and the lack of detail play a positive role in their

accounts. Consider the following passages from Pincock’s papers:

[...] mathematics allows us to make claims about higher-order or large-

scale features of physical systems while remaining neutral about the

basic or micro-scale features of such systems. [Pincock, 2007a, p. 255]

All that I have done is described the physical system at a higher level

of abstraction by ignoring the microphysical properties of the bridges,

the banks and the islands. [Pincock, 2007a, p. 259]

With respect to the role that limiting operations play in idealizations,

we have see in the previous chapter how Pincock agrees in considering that

such limiting operations can have an explanatory role. And he considers

that the limiting operation has exactly the function of highlighting what is

relevant and what is not relevant to the explanation. On this point it seems

that Batterman and Pincock converge. Moreover, Pincock suggests that his

mapping account can contribute to an account of the explanatory power of

a case involving such a limiting operation (as in his example of wave dis-

persion reported in section 5.4)25. This is why he maintains that a focus on

asymptotic reasoning (the taking of a limit) provides new opportunities to

combine a mapping account with a positive account of explanatory power

[Pincock, 2011a, p. 216].

Nevertheless, abstract explanations and asymptotic explanations are con-

sidered (by both Pincock and Batterman) as distinct kinds of MEPP:

I disagree with Pincock’s claim that asymptotic explanations are a

subspecies of abstract explanations. At least I believe that, by and

25In the case of wave dispersion considered by Pincock the limit is regular, while Bat-
terman focuses on examples in which the limits are singular. However, Pincock considers
that also in cases where the limit is singular “it is possible to reconstruct these sorts of ex-
planations [the explanations considered by Batterman, in which the taking of a limit is the
taking of a singular limit] with the aid of the mapping account of content” [Pincock, 2011a,
p. 216]. This proposal is not developed further in his [Pincock, 2011a].
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large, asymptotic explanations often do not proceed by focusing on an

abstract structure realized by the physical system. [Batterman, 2010,

p. 3]

But I explicitly noted in my discussion of the bridges case that this sort

of ‘abstract explanation’ is different from Batterman’s cases: ‘some ab-

stract explanations are not asymptotic explanations [...] [and] abstract

explanations generally require philosophical examination’ [Pincock, 2011a,

p. 213]

In particular, as Batterman points out, asymptotic explanations are ex-

planations that do not necessitate the ‘representativeness’ that appears in

the case of abstract explanations. This is the case, for instance, of the expla-

nation of critical phenomena:

[...] there are no structures (properties of entities) that are involved

in the limiting mathematical operations. That is, limiting mathe-

matical operations typically do not yield anything like the abstract

non-Eulerian structure of the bridge system in Pincock’s example

[Batterman, 2010, p. 21]

6.3.2 Open questions and some criticisms

Naturally, there are still open questions with respect to Batterman’s ac-

count, and a lack of criticism of his view among the contemporary literature

on MEPP does not mean that his position has not been criticized.

For instance, some philosophers have expressed their skepticism toward

Batterman’s approach to explanation during the Conference Mathematical

and Geometrical Explanations in Physics, at the University of Bristol (11th-

12th December 2009). Of particular interest was the lecture given by Steven

French, “Disentangling Mathematical and Physical Explanation”, in which he

proposed the idea that symmetry (or symmetry principles) might play a cru-

cial role in mathematical explanations [French, 2010]. Very roughly, the point

is that symmetries are a fundamental feature of physical structure, and they
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can play an explanatory role. Now, concerning Batterman’s example of crit-

ical phenomena, we have seen that the critical exponents show a dependence

only upon the spatial dimension of the system and on the symmetrical prop-

erties of the order parameter. It is then reasonable, I think, to ask whether

in this case symmetrical properties are the essential explanatory ingredient.

Batterman does not give any essential role to symmetric considerations in

illustrating his account of asymptotic explanations for the example of critical

phenomena, but it seems that scientific practice attributes to symmetry an

important role for the specific case under study. Even if a study of the role

of symmetry principles in MEPP has not been proposed, it would be inter-

esting to further investigate French’s considerations on the explanatory role

of symmetries for the particular case considered by Batterman26. This would

also potentially provide a useful lever on Batterman’s claims. However, here

I will concentrate on what I consider two general weak points of Batterman’s

account: (α) it does not offer a ranking of idealizations in terms of their

explanatory power (this difficulty relies on a more general problem: the lack

of precision in what is seen by Batterman as the key explanatory factor in

asymptotic reasoning); (β) it is not able to capture cases of asymptotic rea-

soning where the throwing away of the details comes without appealling to a

limiting operation. Concerning point (β), I will report one position (that of

Margaret Morrison) which is in conflict with Batterman’s idea that explana-

tory power comes with the procedure of “throwing away the details” (as in

Batterman’s asymptotic reasoning). Finally, I will conclude this section by

considering Batterman’s answer to a question which has not been addressed

yet: (γ) What about the applicability of others models of explanation to the

example of the universality of critical phenomena?

(α) This point concerns what I have called the incommensurability prob-

lem of explanation27. Note that Batterman is silent on the ranking of ide-

26In particular, in a private conversation French observes how it may be that the role of
symmetries can be captured within Dorato and Fellini’s account of ‘structural explanation’
[Dorato et al., 2011]. Nevertheless, this is a direction which has not been explored yet.

27I stated the problem in the introduction to this second part of the dissertation.
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alizations according to their explanatory power. Let me put the problem

in the following way: if we have two asymptotic explanations of the same

phenomenon which appeal to a limiting operation, and this limiting opera-

tion is clearly an idealization as in the case of the thermodynamic limit, do

we have to consider both as equally explanatory? Two cases are possible.

If we answer positively, and we consider them as equally explanatory, it is

reasonable that we need to characterize a possible set of limiting operations

which are considered as explanatory (for instance, limiting operation σ in-

volved in explanation E1 and limiting operation τ involved in explanation

E2 both belong to the set of limiting operations X, which is seen as the set

containing the -explanatory- limiting operations). Nevertheless, in order to

characterize a set of explanatory limiting operations, we need an entrance

requirement, i.e. a condition that σ and τ must satisfy in order to belong

to this (same) set, and this condition is not provided by Batterman. On the

other hand, if our answer is “No! This or that explanation is recognized in

scientific practice as more (or less) explanatory than the other”, we are using

some criterion to compare their explanatory power. Hence, in both cases,

it would be reasonable for Batterman to say something more on this point.

More exactly, Batterman needs a more precise characterization of what is

intended as “mathematical limiting operation”. The problem of not dispos-

ing of a metric for weighing the explanatory power of idealizations relies, I

think, on a general difficulty that Batterman’s account has. The difficulty

comes from the fact that, from Batterman’s discussion and more precisely

from the example I have reported above, it is not clear what is the (essential)

explanatory factor to be considered. Compare the following statements:

(a) “ [...] these singularities are essential for genuine explanation”[Batterman, 2010,

p. 22]

(b) “ [...] taking the thermodynamic limit is an explanatory essential mathemat-

ical operation” [Batterman, 2010, p. 8]
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(c) “Minimal models play crucial computational and explanatory roles”[Batterman, 2002b,

p. 37]

Recall that the transformed tractable Hamiltonian in the RG procedure

represents a minimal model. The renormalization group invokes the so called

thermodynamic limit and the singularity, i.e. the fixed point corresponding

to the behavior of the system at the critical point, is what emerges in this lim-

iting operation. Therefore, while in (a) (b) and (c) the essential explanatory

factor is seen as something different (in a the fixed point, in b the thermody-

namic limit, in c the Hamiltonian itself), if we follow Batterman it seems that

it should be more correct to say that it is the investigation of the limiting

regime (and then the operation involved in b) which makes the Hamiltonian

and the singularity explanatory. This is because the thermodynamic limit is

essential to the RG procedure and therefore to the finding of the fixed point.

The focus is then on the passage to the limit (the same emphasis on the

thermodynamic limit as the limiting operation is given by Batterman in his

[Batterman, 2010]).

Now, another example of asymptotic reasoning is given by Batterman in

chapter 6 of his book The Devil in the Details [Batterman, 2002a]. In it

he considers as explanandum a particular (observable) pattern of behavior

exhibited by rainbows. This universal feature of rainbows emerges in the

asymptotic domain as the theory of light approaches the ray theory (or geo-

metrical optics), i.e. the universal feature emerges in the limit in which the

wavelength of light approaches zero (λ −→ 0). However, neither ray theory

nor wave theory can account for the phenomena (patterns of behavior) inhab-

iting this asymptotic domain. This is because in the zero wavelength limit we

find mathematical singularities and therefore the smooth limit in which we

would find ray optics simply does not exist. The existence of this ‘no man’s

land’ between two theories is important enough to let some physicists speak

of a new theory capable of characterizing this asymptotic domain. This new

theory has been called catastrophe optics [Berry et al., 1980]. Catastrophe
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optics incorporates elements of wave theory as well as ray theory28. Further-

more, under the light of this new theory, it is asymptotic reasoning which,

as in the case of critical phenomena, permits to account for the stability of

patterns under perturbation of microscopic details, thus leading to an expla-

nation of their universality. The point I want to make here is the following.

This example, in which the limiting operation is the passage λ −→ 0, seems

to confirm that in the example illustrated above (critical phenomena) it is the

thermodynamic limit (N −→∞) the limiting operation central to asymptotic

reasoning (and, consequently, to asymptotic explanation). However, consider

again what we said earlier in the chapter: asymptotic methods are methods

which “eliminate detail and, in some sense, precision”; the reasoning involved

in them is asymptotic reasoning; and asymptotic explanation is exactly that

kind of explanation which utilizes such specific kind of reasoning. We also

said that the role of the limiting operation involved had the precise effect

of “throwing away the details”, and this “throwing away the details” is what

grants asymptotic explanations their explanatory power [Batterman, 2010,

p. 3]. Now, if we focus on the thermodynamic limit as the limiting oper-

ation, there is nothing like an asymptotic reasoning in taking it. This is

because to take the thermodynamic limit does not amount to any operation

of “throwing away the details” per se. It is the RG procedure which, through

a series of transformations, permits the throwing away of details. To take

28An important observation should be added here. What Batterman wants to illustrate
with his example is that there exist cases of fundamental physical theories (FT) which
are explanatorily inadequate and whose conceptual apparatus must be supplemented by
concepts of a less fundamental theory (LFT) in order for these theories to be suitable to
explain some phenomena. In the example of the rainbow, the wave theory is explanato-
rily inadequate to account for the phenomenology of interest, and the explanation of the
phenomena requires the introduction of concepts from geometrical optics. A criticism of
this argument is found in [Belot, 2005]. In a nutshell, Gordon Belot’s objection is that in
Batterman’s example the mathematics of the LFT can be defined in terms of the math-
ematics of the FT, and only the latter need be given a physical interpretation, i.e. the
explanation draws only upon resources which are internal to the more fundamental theory.
Similarly, in his discussion note of The Devil in the Details, Michael Redhead accuses Bat-
terman of improperly reifying the mathematical structures of the superseded emeritus ray
theory when claiming that such structures are required for genuine physical understanding
[Redhead, 2004]. See [Batterman, 2005b] for Batterman’s response to Belot and Redhead.
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the thermodynamical limit into account is essential to this procedure, but

it cannot be considered as the limiting operation by which various details

are thrown away29. Therefore the limiting operation would be given by the

RG procedure, but this assertion is controversial because the RG procedure

is a mathematical theory and not a mathematical operation. An operation

could be performed within a theory, but then something more must be said

to characterize such an operation. Furthermore, Batterman seems to be more

inclined to consider the thermodynamic limit as the mathematical limiting

operation which permits to reason asymptotically. What is then the key to

(asymptotic) explanation? “Limits are a means by which various details can

be thrown away”, but what kind of limits? Again, we find the problem of

characterizing the mathematical limiting operation as a subproblem to the

more general problem of characterizing the key explanatory factor in asymp-

totic reasoning.

(β) Let me pass to what I consider a second weak point of Batterman’s

account. Even if we accept that asymptotic reasoning is essential to our scien-

tific practice, it seems that there are cases where the procedure of throwing

away the details comes without appealling to limiting operation. For in-

stance, consider Margaret Morrison’s analysis of the Lagrangian formalism

as applied to the study of mechanical systems30. She stresses how the lack

of details (concerning the nature of the system studied and its motion) was

an essential feature of the Lagrangian approach to mechanics. What is more,

she points out that the fact that the Lagrangian approach is a strategy which

does not consider details is exactly what confers to it its unifying power. Con-

29Recall a previous quotation from Batterman: “Limits are a means by which various
details can be thrown away. (For instance, in taking the thermodynamic limit in the
context of explaining fluid behavior, we eliminate the need to keep track of individual
molecules and we remove details about the boundaries of the container in which the fluid
finds itself, etc.)” [Batterman, 2010, p. 23].

30The analysis of the Lagrangian formalism as an essential ingredient to Maxwell’s uni-
fication of electromagnetism and optics appears in [Morrison, 1992] and is reworked in
chapter 3 of her [Morrison, 2000]. The key role played by the abstract structure of the La-
grangian formalism in the development of Maxwell’s electrodynamics is well summarized
in her review article of Etienne Klein and Marc Lachieze-Rey’s book The Quest for Unity:
The Adventure of Physics [Morrison, 2002].
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sider the following (long) quotation from Morrison’s book Unifying Scientific

Theories :

The unifying power of the Lagrangian approach to mechanics lay in

the fact that it ignored the nature of the system and the details of its

motion; one did not start with a set of variables that had immediate

physical meanings. Indeed, insofar as the formal structure of the the-

ory is concerned, analytical mechanics, electromagnetism, and wave

mechanics can all be deduced from a variational principle; the result

being that each theory has a uniform Lagrangian appearance. The

velocities, momenta, and forces related to the coordinates in the equa-

tions of motion need not be thought of as collective variables that refer

to some microscopic order. Instead, their physical significance is sim-

ply a measure of their practical value in solving Lagrange’s equations.

Hence, we can have a quantitative determination of the field without

knowing the actual motion, location, and nature of the system. This

degree of generality allows us to apply the Lagrangian formalism to

a variety of phenomena regardless of their specific nature; something

that is particularly useful when the details of the system are unknown

or when it is assumed to lack a mechanism. One can see, then, how this

generality is also the basis of its unifying power. Because very little

information is provided about the physical system, it becomes easier

to bring together diverse phenomena. Only their very general features

need be accounted for, yielding a unification that to some extent is

simply a formal analogy between different kinds of phenomena. Be-

cause the Lagrangian approach did not require that Maxwell provide

details about the propagation of electromagnetic waves due to internal

structural features of the field, a unified theory was significantly easier

to produce. [Morrison, 2002, p. 348]

For this case, mathematical limit operations do not constitute paradig-

matic instances of asymptotic reasoning. And this simply because in the case

of the Lagrangian approach there is no appeal to limiting operations. For

instance, consider the case of the different pendula seen above, where the La-
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grangian approach can be used to study the systems. The Lagrangian puts

emphasis on the energetical properties of a system, rather than its internal

structure. Hence the situation is the following: “throwing away the details”

and study the behavior of the system(s) via the Lagrangian formalism gives

rise to the form of MEPP considerd by Batterman (it involves asymptotic

reasoning), but this procedure is performed without appealling to any lim-

iting operation and therefore escapes one of Batterman’s core intuitions31.

Therefore it is not clear if the role of limiting operations in asymptotic ex-

planations must be considered as an essential ingrendient or not (Morrison,

for instance, does not even refer to limiting operations in considering the

Lagrangian formalism). Furthermore, as we have seen in chapter 3, for Mor-

rison unification and explanation are often constrasting goals. In the case

of Lagrangian mechanics she points out that the fact that Lagrangian ap-

proach lacks of details is exactly what confers to it its unifying power. For

her, an increase in unification here means that we lose in explanatory power.

If we translate the situation into Batterman’s terminology (and we retain

Morrison’s conclusion): asymptotic reasoning leads to unification but not to

explanatory power. Nevertheless this openly conflicts with Batterman’s core

idea, i.e. that “asymptotic explanations gain their explanatory power by the

systematic throwing away of various causal and physical details” (previous

quotation). I think a similar remark could be made by considering the uni-

fying power of the RGT when applied to critical phenomena. RGT is able

to account for a pattern of behavior showed by systems with different mi-

31Batterman could reply that the feature of universality of pendula, i.e. the fact that θ =
2π
√

l
g holds for small oscillations, involves a limiting operation in the sense that the small

angle hypothesis (θ � 1) allows the use of a Taylor expansion of the function sin θ about the
equilibrium point which leads to the approximation of sin θ by θ. Furthermore, the original
function is simply the limit of Taylor polynomials (f(x) =

∑∞
n=0

fn(x0)
n! (x − x0)n), hence

a mathematical limiting operation holds. Observe, however, that here we ‘cut’ the Taylor
expansion (we omit terms of some higher order). A similar defense could be used against
the use of the Lagrangian formalism plus a variation principle in the study of a variety of
phenomena. In this case, Batterman could say that a variational principle is an integral
principle, and then a limiting operation is necessarily involved (the use of infinitesimals
quantities/displacements). But do we have to consider the use of infinitesimals in physics
as ‘limiting operations’?
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croscopic composition, thus providing a sort of unifying structure capable of

accounting for the universal behavior. In that case, I think, Margaret Mor-

rison would claim: “That’s right! But are you sure we gain in explanatory

power via the general unified mathematical description?”.

(γ) Finally, let me conclude this chapter with a (partial) answer to the

following question: ‘What about the applicability of others models of expla-

nation to universal phenomena?’. Batterman rejects the applicability of the

mapping accounts in the case such as that of critical phenomena. But what

about other accounts of explanation? Batterman addresses this question in

chapter 3 of his The Devil in the Details. The conclusion he reaches is that

neither the causal-mechanical models nor the unification models manage to

do a very good job [Batterman, 2002a, p. 35]. The motivation for rejecting

the causal-mechanical models is that the explanation of universal behaviour

does not seem to involve causal considerations, at least according to the par-

ticular characterization of causal mechanism or process given by authors as

Salmon (observe that it is precisely the insensitivity to detailed causal mech-

anisms that characterizes universality)32. Concerning Kitcher’s unification,

Batterman’s claim is that in order to account for universal behavior Kitcher

has to include into the explanatory store E(K) some kind of scheme reflecting

asymptotic methods33. However this cannot easily be done, because asymp-

totic methods come in very different forms (associated with different types

of limiting operations):

Asymptotic analyses show that many, if not most, of the details re-

quired for characterizing the types of systems in question are irrel-

evant. But in each case that reasoning may be very different and

the form of the limiting “laws” may also be quite different. I do not

think that the purely internalist account of explanatory unification

can easily respect these differences. That is to say, I don’t think the

unification theorist can simply add to E(K) some schema that says

32I sketched Salmon’s conception of ‘causal process’ in chapter 2.
33Remember that the explanatory store E(K) over K is the set of arguments which best

unifies K, where K is the set of accepted sentences at a particular point in time.
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“use asymptotic analysis” [Batterman, 2002a, p. 33]

Another claim against the possibility to use a unification account in sit-

uations such as that concerning the universality of critical phenomena has

been made by Michael Redhead in his discussion note of Batterman’s The

Devil in the Details. For Redhead, accounts à la Kitcher and à la Friedman

are not appropriate for covering explanations of critical phenomena because

“far from tying together apparently diverse phenomena in unified patterns of

explanation, universality concentrates attention on a range of similar phe-

nomena instantiated by diverse causal mechanisms” [Redhead, 2004, p. 529].

But what about the classical Hempelian D-N model? Batterman distin-

guishes betwen two different sorts of why-questions [Batterman, 2002a, p.

23]:

(i) Why questions which ask for the explanation of why a given instance

of a pattern obtained.

(ii) Why questions which ask for the explanation of why patterns of a given

type can be expected to obtain.

Why-questions (ii) are questions about the existence of universal behavior,

i.e. the kinds of why-questions Batterman claims asymptotic explanation is

able to cover. On the other hand, according to Batterman, the Hempelian

model for explanation is able to answer why-questions of type (i), but it

remains silent on why-questions of the second species. This is a first objection

raised by Batterman against the applicability of the D-N model in the case

of universal phenomena. For instance, in his reply to Gordon Belot, who

claims that asymptotic explanations can be given under the form of D-N

explanations/derivations [Belot, 2005, p. 144-145], Batterman writes:

The question now concerns how to understand Hempel’s idea that we

may “speak derivatively of a theoretical explanation of solar eclipses

or rainbows in general.” The D-N model provides an account whereby

we can explain the particular occurrence of a solar eclipse or of a rain-

bow. It is unclear how such an account (or even a collection of such
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accounts) can allow us to speak ‘derivatively’ of a general account that

would answer the corresponding type (ii) question. The point here,

as I have emphasized in the book, is that each such D-N account of

a particular occurrence will be remarkably different from all of the

others. As Belot himself notes, each account will involve different ini-

tial and boundary conditions –different shapes of the raindrops, for

example. Had we an explanation that answers the type (ii) question,

then it seems that, yes, we may very well speak ‘derivatively’ of ex-

plaining any given instance. We will have an account that tells us

why many/most of those individual details can be ignored. That is

just what asymptotic explanation, as I have presented it, provides.

[Batterman, 2005b, p. 156-157]

A second argument given by Batterman against the possibility of using

the D-N schema in explaining universal patterns of behavior concerns the

use of idealization in the explanation involved. In chapter 2 I presented

the classical Hempelian model of explanation. Remember that, according to

Hempel, an adequate D-N explanation must meet the ‘empirical condition of

adequacy’ (R4), i.e. the sentences constituting the explanans must be true.

Hence any explanation appealling to idealized structures, which are false, is

automatically excluded as good candidate for the D-N logical machinery. In

Batterman’s words:

Asymptotic explanation, in that it typically involves idealizations, fails

(at least in some instances) to meet one of Hempel’s conditions on

an adequate explanation –namely, truth. [Batterman, 2005b, p. 162,

footnote]

Asymptotic explanation is, if Batterman is right, just another form of

explanation. It is a different kind of MEPP. However, as we have seen in the

previous pages, there are still open problems for this account.
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Part III

A new approach to MEPP in

terms of intellectual tools and

conceptual resources
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Don’t treat your commonsense like an umbrella. When you come into a room to

philosophize, don’t leave it outside but bring it with you

Ludwig Wittgenstein’s slogan, in [Wittgenstein, 1975, p. 68]

In the previous parts I have analyzed two general philosophical trends

towards MEPP, together with their most significant positions. In part I it

has been shown how some authors propose a general solution to the problem

of MEPP, namely, they intend to capture the nature of MEPP by proposing

a single encompassing model. Their models, however, are subject to criti-

cisms and counterexamples and they do not seem to offer a robust notion

of MEPP. On the other hand, in part II we have seen how other authors

endorse a pluralist view on explanation and are then committed only to a

partial solution of the problem of what constitutes a MEPP (and how do we

capture such a notion). For these authors there are different kinds of MEPP,

i.e. they consider that what makes something a good explanation can vary

from case to case. Moreover, they offer a characterization of a specific type

of explanation but they do not provide any single encompassing model of

MEPP. When I presented these pluralist positions I have shown how also the

accounts proposed by these authors are open to criticism, and the philosoph-

ical discussion of these positions is still at an early stage. In this final part,

which stands as a conclusion of my work, I will resume and extend some

general results of the previous discussions in order to support two thesis:

α The three WTA accounts analyzed in the first part do not capture some

cases recognized as genuine MEPP in scientific practice. This lack of

success might be due to the fact that, contrary to what the scientific

practice itself suggests, those models do not consider qualitative factors

as essential to MEPP. As a consequence, the models should be refined,

in order to capture the test cases proposed, or rejected in favour of a

different approach. This argument will be defended in chapter 7.

β However interesting and successful might be the consequences which
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would derive from the refinement of each one of the WTA approaches

considered, the burden of the proof is shifted towards the partisans

of the WTA approach and I will not concentrate on such a task. By

adopting a pluralist view and focusing on qualitative factors, I will

suggest a new approach to MEPP which is supposed to account for

our scientific practice and offer new directions of analysis. Even if

we cannot characterize MEPP simpliciter, we can say why a MEPP

is regarded as explanatory in scientific practice. This could be done

by appealling to two categories: conceptual resources and intellectual

tools. Through these categories it is possible to account for the different

species of MEPP we are confronted with in scientific practice. This

thesis, together with the presentation of the relative notions, will be

defended in chapter 8.

I will consider the two thesis in more detail in the next two chapters.

However, let me spend some words on thesis β.

To accept a pluralist view on MEPP entails admitting that it is impossible

to provide an encompassing model of MEPP (together with a general notion

of explanatory power). In claiming that I am adopting a pluralist view and

I am taking into consideration qualitative factors, I am not denying that it

is possible to provide some objective-based (à la Steiner) or formal-based (à

la Kitcher) notion of MEPP which works well in specific cases (this attitude

reflects exactly the pluralist position, which I totally endorse). The moral of

my claim in β is much more fine-grained: I think that a promising task in

the philosophical analysis of MEPP is not to focus on what a MEPP is (this

is the task of the scientist who recognizes a MEPP as genuine in his scientific

practice, not the task of philosophers!), but on why a MEPP is recognized

as providing explanatoriness in scientific practice. The latter task is very

different from the former (maybe the first could be seen as a natural subtask

of the second). The pluralist principle supports this claim in the sense that

it suggests that the investigation of a general universal notion of MEPP

would result as meaningless, and then such a direction should be discarded
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because it is not fruitful. By accepting pluralism, I will not try to develop

a new and distinct model of MEPP, neither will I refine an existent account

of MEPP. I will try to offer a possible schema to capture MEPP, under the

form of a general framework, which will be compatible with this pluralist

principle. Such a schema will provide a representation of MEPP in terms of

two categories (conceptual resources and intellectual tools). Although offered

in terms of two categories, this schema will permit us to represent within its

structure different kinds of MEPP.

Let me anticipate how this schema is supposed to work. Consider the

following example from the game of soccer. To simplify, we can assume that

every tactic of a soccer team can be represented in terms of the number of

players in every unit of the field (defense, midfield, attack)34. For instance, in

a 4-3-3 tactical system we will have four players in defense, three midfielders,

and three attackers. We use the same field-schema made of defense, midfield

and attack zone to represent teams’ tactics which are very different among

them, for instance that of Manchester United and that of Barcelona. Every

distinct tactic can be described, and even classified, according to the schema

provided by the field schema. In other words, the field-schema does offer a

way to capture the differences among the various tactics employed by distinct

teams. The classification is provided by the possible combinations (4-3-3, 4-

4-2, 5-3-2 and so on). Moreover, every kind of tactical system informs us of

the defensive or attacking character of the team (a team which adopts a 5-3-2

will have a more defensive character). In the same way, my schema will accept

within its structure different species of MEPP (different teams’ strategies or

tactics, in the soccer-analogy), and these MEPP will be described in terms

of conceptual resources and intellectual tools (the three field units in the

analogy). As in the case of the team’s tactics, this will point to a potential

way to classify MEPP.

The compatibility of my approach with the pluralist hypothesis therefore

comes from the fact that I will try to identify a trait common to different

34Here I am not considering the goalkeeper, whose tactical position is supposed to be
the same in every soccer team.
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species of MEPP35. This common trait concerns the use of mathematical

concepts, rather than the properties of mathematical entities involved in the

explanation or some objective relevance relation, and the possibility of using

our abilities to reason through these concepts. In terms of the distinction

ontic/epistemic introduced in section 4.2, I will propose then an epistemic

approach to MEPP.

My approach will have various favourable consequences. In particular, as

I will show, the payoff of my analysis in terms of conceptual resources and

intellectual tools will be to:

• Offer a potential solution to the classical asymmetry problem discussed in

connection with scientific explanation.

• Offer a new insight into the ontological debate between platonists and nom-

inalists in philosophy of mathematics. More specifically, if endorsed, my

framework offers a possible ground to reject the validity of the Enhanced

Indispensability Argument proposed by platonists as to show the existence

of mathematical objects.

• Offer a possible linkage with the notion of scientific understanding.

• Integrate an historical approach to MEPP (which is, for the most part,

banned by contemporary models of MEPP).

Far from giving a general characterization of MEPP, I will suggest a

different perspective of study. The general moral will be: even if we cannot

say what a MEPP is, perhaps we can try to answer some more simple and

pragmatic questions: Why do scientist regard a MEPP as such? Is there a

common trait which is shared by the different species of MEPP and which

can permit a classification of MEPP? Naturally, even if I will suggest a way

to answer these questions, my approach is far from giving a whole story about

MEPP. This is why I will point to some problems which are still open and

35In the analogy of soccer, the common trait shared by every team’s strategy is the fact
that a strategy is built on defenders, midfields and attackers.
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are not solved or addressed within my framework. As the painter Nikolaus

Hipp said: “It is better to show restraints that include too much!”.

Finally, I want to add something concerning the motivations for proposing

such an original approach. Basically, four general ideas led me to develop

this analysis:

• The demand to have some qualitative reinforcement in the study of MEPP

(as we have seen in the analysis of the three WTA models, this demand is

urgent and is required by various philosophers); quantitative restrictions are

not enough to capture MEPP!

• The important role that some authors give to contextual factors in the anal-

ysis of explanatory power.

• The idea that the acceptance of the pluralist principle makes the explanation-

scholar better suited to capture the intuitions coming from the scientific

practice (implicit in my first claim above, in thesis α).

• The idea that the driven-force in the study of MEPP must come from scien-

tific practice itself (for instance, from physics itself). To fix a philosophical

model and to fit a number of scientific examples into its framework does

not do justice to the rich scientific methodology and this should be regarded

as an a-priori operation. We must focus on scientific practice itself, and

then go on philosophically. In other words, our methodology must follow a

bottom-up direction.

If we follow Wittgenstein, we will enter into our room to philosophize

(about MEPP) and we will bring our umbrella with us. Our umbrella will

be the observation of our scientific practice.
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Chapter 7

WTA models and qualitative

reinforcements

In this short chapter I will defend the following thesis:

α The three WTA accounts analyzed in the first part do not capture some

cases recognized as genuine MEPP in scientific practice. This lack of

success might be identified with the fact that, contrary to what the

scientific practice itself suggests, those models do not consider qualita-

tive factors as essential to MEPP. As a consequence, the models should

be refined, in order to capture the test cases proposed, or rejected in

favour of a different approach.

Thesis α contains two subthesis:

α1 The WTA models seen in the first part do not account for some cases

recognized as genuine MEPP in scientific practice.

α2 Scientists do attribute an essential role to some qualitative factors which

operate in the explanation provided. Nevertheless, those qualitative

factors are not captured by the three WTA models.

As the numerous criticisms proposed in the first part have shown, there

is an unquestionable link between explanation and qualitative (rather than
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purely quantitative) factors in the practice of scientists who explain phenom-

ena in science. In this chapter, as an example, I will show how the three major

winner-take-all models of MEPP fail in considering as genuine a MEPP rec-

ognized by scientists as such. This lack of success might be due to the fact

that the three models were designed to capture the notion of explanation

according to a formal schema or through the identification of some objective

property, and specific qualitative factors coming from the scientific practice

were not sufficiently taken into account in them.

As a first step, I am going to present a case of MEPP recognized as such

in scientific practice: the behaviour of Hénon-Heiles systems explained via

the phase space formalism. This example has been sketched in section 2.2,

but it will be discussed here in a more comprehensive manner. Note that

to take the behaviour of Hénon-Heiles systems as a test case of MEPP does

not represent a novelty. The example of Hénon-Heiles system has been used

by Lyon and Colyvan in their [Lyon et al., 2008]. However, these authors

discussed it in the context of the nominalist-platonist debate in philosophy

of mathematics. My analysis here points to aspects which are quite far from

Lyon and Colyvan’s ontological considerations. I will not concentrate on the

role that MEPP like this are supposed to play in the ontological dispute, but

rather on why this case is regarded as a genuine explanation by scientists.

This marks an essential difference in the analysis and in the directions of in-

vestigations which follow. In the second place, in section 7.2 I will show that

the three WTA accounts fail in considering this as a genuine MEPP, thus

contradicting the intuitions of scientists. In my assessment I will not evalu-

ate the two pluralist accounts introduced in the second part, and this simply

because the MEPP considered is neither a case of abstract explanation nor

a case of asymptotic explanation. The accounts proposed by Pincock and

Batterman do not aim at accounting for cases of MEPP such as that of the

Hénon-Heiles system. Finally, in section 7.3, my diagnosis for this failure will

confirm the moral of some criticisms which have been addressed to the three

WTA models in part I: qualitative ingredients do play an essential role in
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MEPP1. This consideration will establish a bridge between this chapter and

the final chapter, in which I am going to propose an approach to MEPP in

which these qualitative ingredients are taken into account.

7.1 Hénon-Heiles systems

Four decades ago, Michel Hénon and Carl Heiles were investigating the

motion of stars about the galactic center. Rather than studying the problem

with the actual potential of the galaxy (something which would have been

quite difficult to achieve!), they restricted the motion to the xy plane, as in the

Kepler problem, and studied a relatively simple analytic potential U(qx, qy)

[Hénon et al., 1964]. This potential, called ‘Hénon-Heiles potential’, exhibits

two cubic perturbation terms which couple together two standard harmonic

oscillators:

U(qx, qy) =
1

2
(q2
x + q2

y) + qyq
2
x −

1

3
q3
y , (7.1)

where the coordinates qx and qy are called ‘generalized coordinates’ (I

will come back to these notions in the next paragraphs). Accordingly, we

call “Hénon-Heiles systems” those systems formed by a particle moving in

such a bidimensional potential.

Consider now the physical phenomenon under study, i.e. the motion of

one particle moving in the Hénon-Heiles bidimensional potential U(qx, qy).

And take the motion of the system as our explanandum. More precisely, we

want to explain the behaviour (regular or not) of the system for different

energies.

There are two mathematical ways to study the system. We can study the

system through the Lagrangian analysis. Or, alternatively, we can study it

through the Hamiltonian formulation which comes with a particular mathe-

matical structure called phase space. The Lagrangian formulation is obtained

1I consider quantitative factors as those factors which can be captured through a formal
scheme or analysis. On the other hand, qualitative factors are pragmatic factors, which
cannot be captured through such a formal scheme or analysis.
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introducing the Lagrangian function L = T − U , where T is the kinetic en-

ergy of the system, and successively obtaining the equations of the motion

from the so called Lagrange’s equations :

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (7.2)

In the Lagrangian formulation (nonrelativistic), a system with n degrees

of freedom possesses n (second-order) differential equations of motion of the

form (7.2)2. The state of the system is represented by a point in an n-

dimensional configuration space whose coordinates are the n generalized co-

ordinates qi (qx and qy for the present bidimensional example). The motion

of the system (as a function of time) can be interpreted as the path traced

by this point as it traverses the configuration space. In the Lagrangian for-

mulation, all the n coordinates must be independent. However, there is

another formulation of the problem. This formulation is called the Hamil-

tonian formulation, and it is “based on a fundamentally different picture”

[Goldstein et al., 2001, p. 335]. In the Hamiltonian formulation, we want to

describe the motion in terms of first-order equations of motion. In order

to do that, we double our set of independent quantities (thus obtaining 2n

independent variables) by adding to our generalized coordinates qi the new

variables conjugate (or generalized) momenta pi, which are defined as follows:

pi =
∂L

∂q̇i
, (7.3)

The quantities (q, p) are known as canonical variables.

From a mathematical point of view, the transition from the Lagrangian

to the Hamiltonian formulation corresponds to changing the variables in our

mechanical functions from (q, q̇, t) to (q, p, t), where p is related to q and q̇ by

equation (7.3). The procedure for switching variables in this manner, which

also gives the so called Hamiltonian function associated, is provided by a

2Consequently, for a system of N particles in physical space, the system of equations
above is a system of 3N equations.
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Legendre transformation:

H(q, p, t) =
n∑
k=1

piq̇i − L(q, q̇, t) (7.4)

Now, if we consider the differentials of the Lagrangian L(q, q̇, t) and of

the Hamiltonian (7.4), we will obtain the 2n+ 1 relations

q̇i =
∂H

∂pi
(7.5)

ṗi = −∂H
∂qi

(7.6)

∂L

∂t
= −∂H

∂t
(7.7)

The first two equations above are known as Hamilton’s canonical equa-

tions of motion. They are the desired set of first-order equations of motion

which replace the n second-order Lagrange equations.

The space of the q and p coordinates is known as the phase space3. Hence,

the 2n canonical equations of the motion describe the behavior of the system

point in the phase space, which has 2n-dimensions and whose coordinates

are the 2n independent variables qi, pi. In other words, in the Hamiltonian

formulation of mechanics the dynamics of the system is defined by the evo-

lution of points (‘trajectories’) in this phase space.

For the case of our system, i.e. a particle moving in the bidimensional

potential (7.1), the Hamiltonian function will be:

H = T + U =
1

2
(p2
x + p2

y) +
1

2
(q2
x + q2

y) + qyq
2
x −

1

3
q3
y (7.8)

And the respective (nonlinear) equations of motion:

3Since in doubling our independent quantities we have chosen half of them to be the
n generalized coordinates qi, the configuration space can be thought of as the half of the
phase space that contains the position coordinates qi.
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d2qy
dt2

=
dpy
dt

=
∂H

∂qy
= −qy − q2

x + q2
y (7.9)

d2qx
dt2

=
dpx
dt

=
∂H

∂qx
= −qx − 2qxqy (7.10)

These equations may be obtained from either Lagrange’s equations or

Hamilton’s equations. Although both the routes are admissible, however,

scientists agree that the mathematical procedure involving the Lagrangian

formalism does not convey the sense of explanatoriness that we obtain from

the use of Hamiltonian formalism involving the phase space. This is because

by using the Hamiltonian formalism we can visually deduce, from a represen-

tation in the phase space, if the system has a regular or chaotic motion4. To

be more precise, in order to do that we start by considering the total energy

of the system E constant, and thus we lower the dimensionality of the phase

space by one:

E =
1

2
(p2
x + p2

y) +
1

2
(q2
x + q2

y) + qyq
2
x −

1

3
q3
y (7.11)

We then take a 2-dimensional cross section (surface of section or Poincaré

section) of this hypersurface in the phase space and we map the intersections

of the trajectories with the plane by using a function called Poincaré map

(Figure 7.1). Finally, we look at the “dots” made by the solutions (orbits)

on the surface of section and we can visually grasp qualitative informations

about the dynamics of the system. We do that by following the order in which

the dots appear. Solutions that never pass through the same arbitrarily small

neighborhood of a point twice are chaotic (instead of following a regular curve,

they are scattered and jump around in a more or less random fashion from

one part of the Poincaré section to another). On the other hand, a dynamic

4Chaos is a motion which is, simultaneously: (a) irregular in time (it is not simply
the superposition of periodic motions, it is really aperiodic); (b) unpredictable in the long
term and sensitive to initial conditions; (c) complex, but ordered, in the phase space (it is
associated with a fractal structure) [Tamás and Márton, 2006, p. 22].
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qy

py

qx

Figure 7.1: The qx = 0 plane is a 2-dimensional cross section of the phase
space and is called surface of section or Poincaré section. Poincaré map
p : S −→ S associates successive intersections of a trajectory with the qx = 0
plane in the direction of increasing qx.

state that gives rise to regular motion will have the property that nearby

dynamic states will stay close to it as they get mapped around the plane. We

use the mathematical ‘resource’ of Poincaré map because in the Hamiltonian

formulation of our problem the phase space is 4-dimensional (points in the

phase space are represented by quadruples of the form (qx, qy, px, py)) and

therefore in this space the trajectories (which define the dynamics of the

system) are not directly visualizable on a diagram.

The Poincaré sections for various energies summarize the dynamics of the

system at that energy. Studying the diagrams for different energies we can

observe how at low energy the section is dominated by regular orbits (and

then the associated motion is regular), at intermediate energy the section is

divided more or less equally into regular and chaotic regions, while as we

increase the total energy of the system the orbits become chaotic and the

section is dominated by a single chaotic zone (Figure 7.2)5.

The importance of explaining the behavior of the system through this

5Such transitions from regular to chaotic behavior are quite common; similar phenom-
ena occur in widely different systems, though the details naturally depend on the system
under study.
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(a) (b)

(c)

Figure 7.2: Poincaré sections of the Hénon-Heiles system in the qypy plane
(qx = 0), showing several Henon-Heiles orbits. For E = 1

12
orbits are regular

(a); for E = 1
8

we observe regions of regular motion and regions of chaos (b);
finally, for energy E = 1

6
chaos is dominant (c). Based on [Hénon et al., 1964].

procedure is well recognized by scientists. For instance, just to cite a popular

textbook on mechanics and dynamical systems:

It is in such maps [Poincaré maps] that the fractal structure of chaotic

dynamics becomes plausible. Only in special cases (like those of the

magnetic pendulum, the mirroring spheres and advection) can fractal

structures be observed in real space. Therefore the use of phase space

is inevitable as a means of understanding the structure accompanying

chaos [Tamás and Márton, 2006, p. 22]

Thus the phase space, together with the Poincaré map, is recognized to
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have an explanatory role6. It permits to say why at that particular energy

the system has that particular behavior. We do not explain the behavior of

the system by tracing causal processes and interactions, but the explanation

is carried out by essential appeal to mathematics (the phase space and the

Poincaré map).

It is important to note, again, that the mathematical procedure involving

phase space is not the only alternative for the study of the system. It is

possible to analyse it via the Lagrangian formalism, although this route does

not seem to carry the sense of explanatoriness that we obtain from the use

of phase space theory.

[...] although there is a Lagrangian formulation of the theory in ques-

tion that does not employ phase spaces, the cost of adopting such an

approach is a loss of explanatory power [Lyon et al., 2008, p. 2]

To sum it up, two mathematical formalisms are acceptable to study the

physical phenomenon (regular or chaotic motion of the particle moving in the

bidimensional potential 7.1), but only one of them –the Hamiltonian formal-

ism including Poincaré map– contributes to the MEPP because it permits us

to visually grasp the behaviour of the system.

7.2 Testing the accounts

It is now time to ask ourselves the following question: Are the three WTA

accounts presented above able to account for the mathematical explanation

of the behavior of the Hénon-Heiles system?

6Observe that, with respect to my claim here and to the previous quotation, I am
considering that to have an understanding of a phenomenon amounts to having a gen-
uine explanation of the phenomenon. This is why I consider that phase space, together
with Poincaré map, have an explanatory role. I will address the linkage understanding-
explanation, thus providing a justification for the present claim, in subsection 8.6.1.
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Matching Steiner’s model

Let’s begin with Steiner’s model of MEPP illustrated in chapter 1. Recall

that Steiner’s account of MEPP depends on his account of mathematical

explanations in mathematics, which has been proposed by the author to cover

explanations coming under the form of proofs. In particular, for Steiner we

have a MEPP when the following criterion is satisfied:

CMEPP If we remove the physics (physical assumptions or bridge principles) we

rest with a mathematical proof which satisfies criteria C1 and C2

where C1 and C2 are his criteria for explanatory proofs:

C1 The proof depends on a characterizing property mentioned in the the-

orem (dependence criterion)

C2 It is possible to deform the proof “substituting the characterizing prop-

erty of a related entity”and getting“a related theorem”(generalizability

criterion)

In order to be applied, Steiner’s CMEPP requires a mathematical theo-

rem and a relative proof. Nevertheless the mathematical explanation of why

Hénon-Heiles systems exhibit regular or chaotic motion does not come un-

der the form of a mathematical theorem (together with the relative proof).

Therefore Steiner’s account for MEPP should be considered to have no ap-

plication for cases as this one.

However, it might be observed that for Steiner having a proof is not a nec-

essary condition in order to have a mathematical explanation within math-

ematics, i.e. that he accepts the existence of explanations in mathematics

which do not come under the form of proof. In fact, in a passage of his

paper “Mathematics, explanation and scientific knowledge” [Steiner, 1978b],

Steiner claims that we have a mathematical explanation in physics when re-

moving the physics (physical assumptions or bridge principles) we rest with a

“mathematical explanation of a mathematical truth” [Steiner, 1978b, p. 18].

In this passage, the “mathematical truth” to be explained is not identified
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with the result of a proof, then it might be thought that Steiner is referring

here to explanations in mathematics which are not proof-explanations. This

reading would provide a potential way to defend Steiner from what I said in

the previous paragraph7. In order to test his model, this possibility must be

taken into account.

Let’s then assume that Steiner’s account can cover MEPP which do not

directly involve mathematical proofs. I will show that, even with this as-

sumption, Steiner’s model must be considered to have no application for the

case presented in the previous section. As it will emerge from my discussion

below, a general difficulty for the account comes from the fact that we are

not faced with a theorem and therefore the choice of the mathematical truth

that the mathematical formalism is supposed to explain turns out to be ex-

tremely subject to arbitrariness.

To “remove the physics” in the case of the Hénon-Heiles system is to con-

sider that are left with the first-order differential equations (7.5) and (7.6).

As we have seen above, the mathematical study of the solutions of this sys-

tem is made by fixing the value of E, and introducing a 2-dimensional cross

section in phase space. Finally, we map the intersections of the orbits with

the plane by using the Poincaré function. This is only mathematics, and no

physical assumptions are required to proceed in this way. According to this

‘rescue’-reading of Steiner, a MEPP requires that we remain with a mathe-

matical explanation of some mathematical truth. Now, by considering that

the dots on the Poincaré section are not (physical) dynamical states of the

system but intersections of the solutions of our system of differential equa-

tions with a section of the plane in phase space, we are left with a particular

succession of dots on a plane. Does this represent a mathematical explana-

tion of a mathematical truth? Is the proposition ‘the succession of the dots

7Note, however, that Steiner’s examples of explanation in mathematics always concern
proofs (see his [Steiner, 1978a], where the examples are given). This suggests that for
him a mathematical explanation of a mathematical truth is an explanatory mathematical
proof. Furthermore, it is natural to identify a ‘mathematical truth’ with the result of a
proof. Otherwise, what would “mathematical truth” stand for? Steiner does not offer any
definition.
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is so and so...’ the mathematical truth we are explaining here? Certainly

not. However, we might reason in the following way.

The differential equations (7.5) and (7.6) describe the (continuous) time

evolution of our system. A Poincaré map can be interpreted as a discrete

dynamical system with a state space that is one dimension smaller than the

original continuous dynamical system. It preserves many properties of pe-

riodic and quasiperiodic orbits of the original system (differential equations

7.5) and has a lower dimensional state space, and this is why we use it for

analyzing the original system (even if, in practice, this is not always possible

as there is no general method to construct a Poincaré map). The stability

of a periodic orbit of the original system is closely related to the stability of

the fixed point of the corresponding Poincaré map. A periodic orbit of our

original continuous dynamical system is stable if and only if the fixed point of

the Poincaré map is stable8. This is a mathematical theorem [Arnold, 1992,

p. 258]. Nevertheless the stability of a periodic orbit is a mark of regular

behavior, which is something we want to explain for our system at a par-

ticular energy E fixed. Hence, in our case, the mathematical truth to be

considered here might be the proposition ‘the fixed point of the correspond-

ing Poincaré map is stable or not’, which is a pure mathematical statement

because stability can be defined analytically. However, observe that this re-

sult (stability of periodic orbits) is obtained by computation (by computing

the orbits through the numerical integration of the equations of motion, for

instance using the Runge Kutta integration scheme) and not via analytical

methods9. The same holds for the investigation of quasi-periodic orbits (the

8The stability (or Lyapunov stability) of an orbit of a dynamical system characterizes
whether nearby orbits will remain in a neighborhood of that orbit without being repelled
away from it. The same idea characterizes the stability of fixed points of a mapping: a
fixed point x0 of the mapping A is called Lyapunov stable (or stable) if for every ε > 0
there exists a δ > 0 such that |x− x0| < δ implies |Anx−Anx0| < ε for all n, 0 < n <∞
simultaneously.

9For fixed E = 1/12, Hénon and Heiles found that the stable fixed points of the Poincaré
map, corresponding to stable periodic orbits, are located near the middle of the nested,
closed curves (Figure 7.2a). To obtain this result they calculated the four regions with
oval-shaped orbits for smaller and smaller circumferences, and they observed that they
shrank to four fixed points [Hénon et al., 1964, p. 75]. The point I want to stress here
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continuous lines in Figure 7.2, which do represent regular behavior) and of the

irregular aperiodic orbits (the“dots”, representing chaotic behavior), which is

performed by numerical analysis, for a number of values of E. Therefore, due

to the mere calculatory aspect of these steps, it would be difficult to say that

we are faced with a mathematical explanation of some mathematical truths.

In fact, there is evidence that the explanatory activity in mathematics is

driven by factors other than justificatory aims such as establishing the truth

of a mathematical fact [Hafner et al., 2005]10. This conclusion is reinforced

if we consider the explanation of the behaviour of the Hénon-Heiles system

as given in the previous section, where the regular or chaotic behavior is

deduced from qualitative considerations and analytical considerations about

the stability or the periodicity of the orbits are not necessary. Consequently,

to take into consideration such analytical aspects as to make Steiner’s model

fit with the test-case would represent an ad hoc move, which does not mirror

the practice of scientists.

Let me add a remark. The very same test-case concerning the behavior

of Hénon-Heiles systems has been used in section 2.2 to show that the D-

N Extended (deductive-nomological extended) model is not apt to capture

MEPP. In particular, I suggested that, when faced with this case of MEPP,

the D-N Extended is confronted with two major problems. First, it cannot

deal with mathematical operations or procedures (which do not come under

the form of statements). Second, even if we would have these procedures or

operations under the form of theorems, the model would lack in resources

to discriminate between the explanatory mathematical procedure and the

non-explanatory one. And this because, since the two mathematical proce-

dures (the Lagrangian and the Hamiltonian) are both formally correct, the

is that we cannot find the difference equations of the Poincaré map for our Hénon-Heiles
system. The Poincaré map is found only by solving numerically the differential equations
of the system, finding the successive intersections of various trajectories with the surface
of section. Is this a mathematical explanation?

10For instance, when confronted with a theorem, the mathematician prefers a particular
proof-strategy or procedure because that provides more than a mere justification of the
mathematical truth ([Kitcher, 1984],[Sandborg, 1998], [Tappenden, 2005]).
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model would consider both as explanatory and would regard them as good

ingredients for its deductive schema. Therefore it seems that the fallibility

of Steiner’s model and that of the D-N Extended derive from a very simi-

lar cause. The D-N Extended fails to account for the Hénon-Heiles MEPP

because this explanation appeals to a factor (the possibility of visualizing

a particular state of affairs) which cannot be captured by a purely formal

deductive structure. On the other hand, Steiner’s model fails in capturing

the MEPP because there is nothing like a formal proof from which it would

be possible to derive the explanandum. But every formal proof inevitably

follows a deductive schema, therefore the same ‘purely formal deductive in-

gredient’ required by the D-N Extended model is required by Steiner’s model

as well. Hence, the common insufficiency seems to come from the fact that

both the two accounts consider deductive (mathematical or law-based, in the

case of the D-N model) arguments as central to explanation.

Matching Kitcher’s unification model

In chapter 3 I illustrated the unification model proposed by Kitcher and

I presented several criticisms. The case used by Hafner and Mancosu to test

Kitcher’s model in mathematics concerned Brumfiel’s work on real closed

fields. In that particular case, Brumfiel explicitly indicates that he adopts

a certain method of proof even though another method that would provide

a more unified method of proof is available as well (here ‘unified’ is used in

Kitcher’s sense). This would undermine Kitcher’s proposal that unification

is the key to explanation not only in science, but also in mathematics.

Another observation against the possibility of using Kitcher’s model to ac-

count for cases recognized as explanatory in mathematical practice has been

proposed by Jamie Tappenden. By giving a short analysis of the unification

approach for cases of mathematical explanation within mathematics, Tap-

penden observed that existing accounts of unification are more balanced on

quantitative restrictions (for instance, the quantity of patterns in Kitcher’s

formulation) and need to be supplemented with qualitative reinforcements.
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These authors (Mancosu, Hafner, Tappenden) agree on demanding Kitcher’s

theory to introduce some qualitative reinforcement in its apparatus in order

to reflect the actual mathematical practice. Furthermore, as we we have seen

in chapter 6, Redhead has observed how, in case such as Batterman’s example

of critical phenomena, the unification approach proposed by Friedman and

Kitcher is useless because that account has been created to fit together differ-

ent phenomena into unified patterns of explanations, when on the other hand

universality concerns similar phenomena which come from different causal

stories [Redhead, 2004, p. 529]. Moreover, also Batterman considered that

these unification models are not well suited to account for critical phenom-

ena. In particular, Batterman remarks that unification models are not able

to answer the specific why-questions which concern these phenomena. These

why-questions ask for the explanation of why patterns of a given type can be

expected to obtain11.

In this subsection I will concentrate on the case of Hénon-Heiles sys-

tem presented above, and I will show that Kitcher’s account is faced with

evident difficulties when it is demanded to account for such a MEPP. By

paralleling what Kitcher considered as a paradigmatic case of explanation by

unification (that given Newtonian theory) and the example considered above

(Hénon-Heiles system), I am going to defend the idea that Kitcher’s unifica-

tion approach lacks resources to account for the latter MEPP. To anticipate

my argument, I will point to the fact that the regular or chaotic behavior

of the system is explained by appealling to the possibility of visualizing the

trajectories on the surface of section. According to scientists, this is an es-

sential ingredient in the explanation provided. However, such an inferential

step (the inferential step in which we infere the regular or chaotic behaviour

of the system by visualizing the trajectories) cannot be modelled by Kitcher’s

idea of argument pattern, which is designed according to a formal deductive

schema.

11Nevertheless, as I remarked in the Introduction to this dissertation, Batterman
does not provide any ‘robust’ assessment of Kitcher’s model but only a sketch (see
[Batterman, 2002a, p. 32-33]).
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In chapter 3 we have seen that the explananda considered in Kitcher’s

unification model are members of K. Informally, we can think of K as the

set of statements endorsed by an ideal scientific community at a specific mo-

ment in time. A statement in K, for instance that of the form “Object O1

has position P1 and velocity v1 at time t1”, is derived in Kitcher’s model by

using a particular argument pattern (for example, the Newtonian pattern).

Furthermore, the same pattern is used to derive statements which do repre-

sent different phenomena. For instance, the Newtonian pattern is also used

to derive the statement “Object O2 has position P2 and velocity v2 at time

t2”, which refers to a physical phenomenon different from that considered

by the previous statement having the same form. The unification model is

then able (if we agree with Kitcher) to tell that statements which represent

different phenomena are derived from arguments that instantiate a common

argument pattern12.

Now, in order to apply Kitcher’s account to the present case of MEPP,

two essential requirements should be fulfilled. First, the pattern of derivation

used in the MEPP of the Hénon-Heiles system must represent an instance of

a pattern used in deriving statements which concern the behavior of other

physical phenomena as well. Otherwise, there would not be the unification

idea that Kitcher assumes for explanation, and my testing would result triv-

ial. Second, the statement concerning the behaviour of Hénon-Heiles system

must belong to the set K of statements accepted by a scientific community

at a particular time. For simplicity, let me indicate with the expression

‘behaviour-statement’ a statement concerning the behaviour of a physical

system13. In our case, the behaviour-statement to consider is the following:

12Consider, for instance, that O1 is a ball and O2 is a satellite. The orbiting of the
satellite around the Earth and the falling of the ball from a tower are different phenomena.
However, according to Kitcher, they are covered (and unified) by the same Newtonian
pattern, i.e. the arguments from which we derive the two statements “Object O1 has
position P1 and velocity v1 at time t1” and “Object O2 has position P2 and velocity v2 at
time t2” do instantiate the same (Newtonian) argument pattern.

13Intuitively, statements such as “Mark played his new guitar during the concert” are
not among the behaviour-statements I am considering here.
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S1 ‘The particle P has regular (or chaotic) behaviour at energy E’

Fortunately, both of the requisites are met: the behaviour-statement S1

belongs to K; second, there exist behaviour-statements concerning physical

phenomena different from that related to S1, and these statements are de-

duced via the same procedure used to derive S1. With respect to the former,

the behaviour-statement “The particle P has regular (or chaotic) behaviour

at energy E” belongs to K because it expresses a belief shared by scientists

(it comes from our scientific practice, and it expresses a belief which is shared

by the scientific community at a particular time). Furthermore, it is easy to

see how the second requisite is satisfied as well. The very same procedure

involving the Hamiltonian formalism, the phase space and the Poincaré map,

can be used to infer statements concerning the behaviour of physical phe-

nomena different from the motion of a particle in a potential. For instance,

the same procedure can be used in the case of the double pendulum, which

is a different physical phenomenon14.

If distinct behaviour-statements about the different phenomena are in-

ferred through the very same procedure, according to Kitcher there should

be an argument pattern which is used to derive these behavior-statements,

thus providing unification. This suggests that the notion to be checked here

is that of Kitcher’s argument pattern.

To test Kitcher’s notion of argument pattern for the present case amounts

to answering the crucial question: is there a pattern (in Kitcher’s sense) which

is able to instantiate the Hénon-Heiles derivation and the derivation of the

double pendulum? If yes, by considering the case of Hénon-Heiles system, an

instantiation of this pattern would account for the particular derivation of

the statement “The particle P has regular (or chaotic) behaviour at energy

E”. In my testing below I am going to show that Kitcher’s idea of argument

pattern does not capture this particular derivation. More generally, I will

14In the same way of the Hénon-Heiles system, the regular or chaotic behaviour of this
system can be established by using the Hamiltonian formalism and then looking at the
trajectories made on the surface of section. See chapter 5 of [Korsch et al., 2008] for a
study of the double pendulum.

339



point to the fact that Kitcher’s argument pattern does not admit such types

of derivations within its structure, thus constrasting with the intuitions of

the scientists who consider this derivation as a genuine MEPP.

For Kitcher, a general argument pattern 〈s, f, c〉 is a triple consisting of

a schematic argument s, a set f of filling instructions and a classification c

for s. In the Newtonian case, the following schematic sentences (1)-(5) form

a schematic argument sN :

1. The force on α is β

2. The acceleration of α is γ

3. Force = mass · acceleration

4. (Mass of α)·(γ) = β

5. δ = θ

The members of the set of filling instructions fN are: “all occurrences

of α are to be replaced by an expression referring to the body under inves-

tigation”; “occurrences of β are to be replaced by an algebraic expression

referring to a function of the variable coordinates and of time”; “γ is to be

replaced by an expression which gives the acceleration of the body as a func-

tion of its coordinates and their time-derivatives”; “δ is to be replaced by

an expression referring to the variable coordinates of the body, and θ is to

be replaced by an explicit function of time”. The set of filling instructions

fN contains the directions for replacing the dummy letters α, β, γ, δ, θ in

every schematic sentence. The sentences contained in the classification set

cN for the schematic argument sN give us the inferential information about

the schematic argument: “(1)-(3) have the status of premises”; “(4) is ob-

tained from (1)-(3) by substituting identicals”; “(5) follows from (4) using

algebraic manipulations and the techniques of the calculus”. Thus we have

that a particular derivation in Newtonian mechanics, i.e. a sequence of sen-

tences and formulas which accord Newton’s laws, instantiates the general

argument pattern 〈sN , fN , cN〉 just in case: (i) the derivation has the same

number of terms as the schematic argument sN , (ii) each sentence or formula
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in the derivation can be obtained from the corresponding schematic sentence

in accordance with the filling instructions fN , (iii) the terms of the deriva-

tion have the properties assigned by the classification cN to members of the

schematic argument sN . The unifying power of Newton’s theory consists in

the fact that, by using the Newtonian pattern 〈sN , fN , cN〉 again and again,

the theory shows us how to derive a large number of statements accepted by

the scientific community.

Let’s now consider the laws of mechanics and the theory of differential

equations as belonging to the corpus K of our beliefs. We want to con-

struct an argument pattern (of the same kind of Kitcher’s Newtonian pattern)

which does instantiate the particular derivations which lead to the following

behaviour-statements:

S1 ‘The particle P has regular (or chaotic) behaviour at energy E’

S2 ‘The double pendulum S has regular (or chaotic) behaviour at energy

E’

Every statement above (S1, S2) is accepted in K, and each statement

concerns a different physical phenomenon (respectively, the motion of a par-

ticle in a potential and the motion of a double pendulum). The behaviour-

statement S1 and S2 are both obtained by finding the equations of motion,

constructing the Poincaré section with the relative map, and finally grasp-

ing visually the behaviour of the system for fixed energies. Observe that

there are plenty of behaviour-statements (concerning different physical phe-

nomena) that can be obtained through the same procedure. For instance,

statements about the regular or chaotic behaviour of the voltage in a tri-

ode circuit (modelled by the Van der Pol oscillator), about the behaviour

of a spring pendulum whose spring’s stiffness does not exactly obey Hooke’s

law (modelled by the Duffing oscillator), or even about the behaviour of the

simple pendulum or the undamped spring-mass system (the latters modelled

by a simple harmonic oscillator)15. The list of statements above contained

15In the latter unidimensional cases (simple pendulum and undamped spring-mass sys-
tem) the surface of section coincides with the whole phase space. To study the trajectories
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only two of them. Now, if the steps in the derivation involving the equations

of motion and the construction of the Poincaré section can be mirrored by

an argument pattern à la Kitcher, the inferential step which appeals to the

possibility of visualizing the trajectories cannot. This is manifest if we look

at the Newtonian pattern presented above. How would such a (visual) in-

ferential step appear in the schematic argument s? And what kind of filling

instructions and classification would be able to capture it? The derivation

which is performed in the Newtonian case can be mirrored by a formal de-

ductive schema of the kind Kitcher proposes, but the derivation used in the

MEPP of Hénon-Heiles system does appeal to an ingredient which cannot

be mirrored by the idea of argument pattern. Moreover, this ingredient is

recognized as essential by scientists and therefore it is reasonable to include

it in the pattern-structure. If there exits a common pattern for behaviour-

statements like S1 and S2, then, it seems that this pattern has a structure

essentially different from that of the Newtonian pattern 〈sN , fN , cN〉 proposed

by Kitcher.

To sum up, an argument pattern à la Kitcher does not admit inside its

structure a particular inferential step recognized by scientists as essential to

the explanation provided. It is then inappropriate to use it for derivations of

behaviour-statements such as that concerning the Hénon-Heiles system, or

for similar derivations of behaviour-statements concerning different phenom-

ena. Hence Kitcher’s unification model, at least in its original form, is not

able to account for the MEPP concerning the behaviour of the Hénon-Heiles

system16.

on the surface of section is the same as to study the trajectories in the phase space.
16Observe that the fact that Kitcher’s argument pattern does not reflect the kind of

inferences made in the Hénon-Heiles example is sufficient to show the inapplicability of
Kitcher’s account to the present case. Further considerations about the number of conclu-
sions generated by the pattern are not necessary once the basic idea of argument pattern
comes as inapplicable to our case.
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Matching the pragmatic model

In section 2.4 I showed how the PET account, i.e. Van Fraassen’s account

extended to the case of MEPP, had problems in accounting for Baker’s ex-

ample of MEPP. Furthermore, from that discussion I advanced an argument

against the possibility of using PET as model of MEPP. The motivation for

discarding the traditional pragmatic account, as well as PET, as potential

accounts of MEPP came from an observation I made in section 2.5. First,

in line with Mancosu’s intuition [Mancosu, 2008b, p. 140], I assumed that a

theory of mathematical explanations of scientific phenomena might be not

completely independent of a theory of mathematical explanation of mathe-

matical facts. Therefore I considered the traditional pragmatic account from

this perspective (by considering it as a model for explanation within math-

ematics). However, as seen from my considerations, Van Fraassen’s theory

is not suitable to deal with mathematical explanation within mathematics,

thus the pragmatic model should also be rejected as a model of MEPP. The

alternative strategy was to consider the extension of the pragmatic theory (I

called PET this extension), assume some sort of methodological continuity

between the mathematical word and the physical one, and focus directly on

MEPP. But also this extension came out as problematic because it could be

made only via two approaches: define an objective relevance relation, but

this is exactly the problem of determining what counts as an objective cri-

terion of explanatoriness (something Van Fraassen does not want and firmly

excludes from his account!); or assume Van Fraassen’s theory as a theory

through which one evaluates the relevance of answers for the questioner (in

the context of MEPP). The latter case, however, also turned out to be in-

sufficient for our purposes. In fact, when we have at disposition only one

mathematical theory of the physical phenomenon, the questioner has only

one mathematical answer at her disposition and the PET does not tell us

anything interesting about MEPP. In both cases we are faced with the prob-

lem of evaluating the mathematical argument, and this is something that

creates problems to Van Fraassen’s model as extended to MEPP. In this
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subsection I will take into consideration Van Fraassen’s original model and

I will show that it is not able to account for the Hénon-Heiles’ MEPP for a

reason different from those reported in section 2.4. My argument below will

reinforce my considerations about the difficulty a why-question approach has

when faced with MEPP.

In the case of Van Fraassen’s model, the model looks at explanations as

answers to why-questions and it needs a relevance relation in order to ac-

count for them. Consider our why-question ‘Why does Hénon-Heiles system

have chaotic behaviour at energy E?’, where the topic Pk is ‘Hénon-Heiles

system has chaotic behaviour at energy E’. In the contrast class X we will

have, together with the topic, the alternative proposition ‘Hénon-Heiles sys-

tem has regular behaviour at energy E’. According to what we saw in the

previous section, the answer B to the why question is given by the following

proposition: ‘Because solutions –the dots– are scattered on Poincaré section.

They never pass through the same arbitrarily small neighborhood of a point

twice’.

Now, consider our answer B in the form ‘Because A’, where A is the

proposition ‘Solutions –the dots– are scattered on Poincaré section. They

never pass through the same arbitrarily small neighborhood of a point twice’.

According to Van Fraassen, B is a direct answer (an explanation) to our why-

question Q = 〈Pk, X,R〉 if the following conditions are both satisfied:

(i) proposition A bears a relation R to 〈Pk, X〉

(ii) B is the proposition which is true exactly if: the topic Pk is true; only

the topic is true in the constrast class X (formed only by the two

propositions ‘Hénon-Heiles system has chaotic behaviour at energy E’

and ‘Hénon-Heiles system has regular behaviour at energy E’) ; and A

is true.

There are at least two problems with this approach as applied to our

test-case, namely: a difficulty in determining the relevance relation R and a

problem in what a why-question presupposes. Both point to the fact that
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the explanation considered cannot be captured by a why-question analysis.

Here I will only address the second problem (this will be sufficient, however,

to reject Van Fraassen’s model as suitable to cover the present case).

Consider again the second part of Van Fraassen’s definition of direct an-

swer: B is a direct answer to Q if (ii) B is the proposition which is true

exactly if: Pk is true; only Pk is true in X; and A is true. Moreover, keep in

mind that we want Van Fraassen’s account to agree with scientific practice

in considering the procedure which involves phase space and the Poincaré

map as a genuine explanation. The difficulty for Van Fraassen’s approach is

noticeable. To say that only Pk is true in X (and then to regard the propo-

sition “Hénon-Heiles system has regular behaviour at energy E” as false) is

grounded exactly in our possibility of grasping qualitatively the behaviour of

the system via the Poincaré map and claim that proposition A is true. In

other words, we know that Hénon-Heiles system has chaotic behaviour at en-

ergy E because we use the Poincaré map and we infer visually that solutions

never pass through the same arbitrarily small neighborhood of a point twice.

Nevertheless this means that, according to a why-question analysis, the ex-

planatory activity admitted assumes the form of a display of consequences

(the topic Pk) of what we have already accepted as given (the proposition A).

Very roughly, this would amount to saying: “this is an explanation because

we have already accepted that we have an explanation”. This was, in fact,

the general moral of Sandborg’s criticism reported in subsection 2.3.3. To

use his words:

The key point is that a why question is taken to implicitly fix the way

an answer must regard its topic [Sandborg, 1998, p. 621]

Therefore either the why-question approach proposed by Van Fraassen is

not able to account for our MEPP17.

17The failure of the why-question approach for cases of MEPP such as the case of the
Hénon-Heiles I propose here can be attributed to the fact that those cases do not come
under the form of why-questions. As I showed above, to subsume our explanandum in a why
question amounts to fixing ‘a priori’ the way the answer regards the topic. Perhaps, in cases
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7.3 The moral: the importance of qualitative

factors

A general conclusion which can be drawn from my testing above is that

the three WTA models seems to be insufficient in capturing one MEPP rec-

ognized as such in scientific practice, and consequently should be abandoned

or refined. Moreover, we have seen in section 7.1 that in such a MEPP it is

possible to appeal to our ability to reason visually on a diagram. This qual-

itative component is essential to the explanation: by looking at the diagram

in the right way we can explain why the system has a particular behaviour

at fixed energies. This suggests that there is a link between explanation and

specific qualitative (rather than purely quantitative) factors in the practice

of scientists who explain phenomena in science. Despite having an essential

role in the explanation provided by the scientists, however, the qualitative

ingredient which is involved in the explanation of the behavior of the Hénon-

Heiles system is not captured by the three WTA models, as my assessment

shows.

Observe that my evalution of the models, and in particular my consider-

ations about the inadequacy of the three WTA models to account for qual-

itative factors essential to the explanation, fit well with some of the major

criticisms of the WTA accounts presented in the respective sections (section

1.4 for Steiner, section 3.3 for Kitcher and subsection 2.3.3 for Van Fraassen).

Concerning Steiner, Michael Resnik and Johannes Hafner drew attention to

the fact that context-dependence does affect explanation, but it is not pos-

sible to capture this contextual factor via some kind of purely quantitative

factor or through the kind of ‘objective property’ Steiner proposes. Fur-

such as that of the Hénon-Heiles system, a more promising direction of analysis would be
to adopt a What-question approach. For instance, re-formulating the explanatory question
as “What is the behaviour of the system at Energy E?”. A motivation for such a change
of perspective comes from the observation that, just as it occurs for explanations given
in commonly spoken language, explanations in science are associated with informative
answers which are responses not only to why-questions, but also to what or how -questions
([Faye, 1999], [Sintonen, 1999]).
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thermore, Johannes Hafner and Paolo Mancosu pointed out that Steiner’s

model of explanation does not account for the intuitions of the scientists in

their practice. With respect to Kitcher’s unification account, the same au-

thors (Hafner and Mancosu) and Jamie Tappenden observed how the account

must be emended in order to also consider qualitative (rather than purely

quantitative) factors within its structure. Finally, David Sandborg advocated

the introduction of qualitative factors (“conceptual resources not previously

available”) into Van Fraassen’s model.

It can be noted that MEPP do not always involve visual reasoning (and

our ability to reason visually) and it is recognized that there are MEPP that

involve other qualitative ingredients which come under the form of peculiar

forms of reasoning as well. An example is given by asymptotic reasoning. In

chapter 6 we have seen how Robert Batterman has argued that particular

species of MEPP, called “asymptotic explanations”, gain their explanatory

power by the systematic throwing away of various causal and physical de-

tails. By using asymptotic methods, i.e. methods which eliminate detail and

precision, the scientist is able to obtain a particular mathematical explana-

tion for a phenomenon (where the phenomenon considered was a pattern of

behavior). The reasoning which is involved in asymptotic methods is called

by Batterman asymptotic reasoning, and asymptotic explanation is exactly

the kind of explanation which involves such specific kind of reasoning. As

we have seen, the main example discussed by Batterman concerns the expla-

nation offered in condensed matter physics for the so called universality of

critical phenomena. In particular, for that case the mathematical technique

of renormalization group theory is what permits us to reason asymptotically

and obtain an explanation for the universality of critical phenomena. Note

that Batterman’s intuitions about the explanatory role played by such par-

ticular kind of reasoning is strongly supported by examples from scientific

practice. As I remarked in chapter 6, the same high-energy theorist Kenneth

Wilson, who formulated the renormalization group theory in general terms

in 1971, in his Nobel lecture gave particular emphasis to the crucial role
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played by this theory (and then the asymptotic method) in the explanation

of the universal behaviour of different systems [Wilson, 1971]. Moreover, this

opinion is shared by other scientists as well. For instance, the mathematical

physicist Michael Berry has recently drawn attention to the importance of

asymptotic methods in physics during his talk “Emergence and asymptotics

in physics: how one theory can live inside another” [Berry, 2009].

Another form of reasoning which is recognized to come as essential ingre-

dient in our explanatory scientific practices is analogical reasoning. Analog-

ical reasoning is the process of reasoning by analogy, i.e. reason and learn

about a new situation (the ‘target’ analog) by relating it to a more famil-

iar situation (the ‘source’ analog) that can be viewed as structurally parallel

[Holyoak et al., 1997]. While this particular kind of reasoning is used ex-

tensively in our everyday-life, some philosophers welcome the idea that the

use of analogical reasoning in science does provide an essential contribute to

scientific explanation [Hesse, 1966].

Far from giving a bestiary of the kinds of reasoning we find associated to

MEPP in scientific practice, the purpose of this chapter is to suggest that

MEPP involve specific qualitative ingredients which are recognized as essen-

tial by the scientific community and which come under the form of particular

kinds of reasoning. More precisely, these kinds of reasoning come with an

ability to reason. For instance, visual reasoning come with the ability to

reason visually: when we reason visually on a diagram we use our ability

to reason visually on that diagram. In Batterman’s case, when we reason

asymptotically we are using our ability to reason asymptotically (I will say

more on this point in the next chapter). These qualitative factors are not

captured by the three WTA models presented in the first part of this disser-

tation.

Now, these forms of reasoning which we find in MEPP are essentially dis-

tinct (for instance, analogical reasoning is distinct from visual reasoning) and

it might be thought that they characterize different ‘species’ of MEPP. To

accept this new perspective has an immediate consequence on our method-
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ology and on the possibility to study MEPP by proposing a WTA model.

In order to account for this variety, or species, of explanations we have to

accept that pluralism is the best attitude to adopt (at least if we take the

intuitions of scientists seriously, which is what I assume as a basic premise of

my investigation). It is very hard, in fact, to see how this picture of MEPP

can fit within the traditional WTA view. In order to account for this vari-

ety, or species, of explanations we have to accept that the pluralist principle

provides a more promising way for the study of MEPP.

Observe that to defend the ‘advantage’ of a pluralist approach is not only

to say that it is preferable because the WTA conception of explanation (as

expressed by the three models analyzed here) is in trouble when faced with

MEPP which appeal to such qualitative ingredients. Perhaps, another point

which supports the advantage of the pluralist way comes from the fact that

by adopting this perspective we can account for a greater number of cases

of MEPP (cases of MEPP recognized as such in scientific practice) which

otherwise would be excluded from our philosophical investigation. This con-

stitutes, I think, a quite important step ahead in the study of MEPP.

Naturally, all the previous considerations do not exclude that a WTA

model might be proposed (or that a WTA model is able to capture the very

specific case of MEPP for which it was designed –something which, if true,

would corroborate the need to adopt a pluralist principle). My modest claim

in section 7.2 was that such a single encompassing model is not within the

WTA models I have analyzed during this work. But if my testing above

is correct, and if scientific practice suggests that specific forms of reasoning

are a ‘mark’ of MEPP, how could the WTA partisan argue against the need

of adopting a pluralist perspective? There are, I think, three possible ways

to reject pluralism as the better attitude to adopt toward MEPP. The first

strategy would consist in denying that such qualitative ingredients play an

essential role in MEPP or that examples such as that of Hénon-Heiles sys-

tem do represent genuine cases of MEPP. Nevertheless, this option is not the

option our contemporary science seems to suggest us. If we want to take the
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work of scientists seriously, I think, we have to accept the test-case considered

as a genuine case of MEPP and follow the scientists in looking at the form

of reasoning which is involved in MEPP as a crucial explanatory ingredient.

Naturally, a second move would be to propose a new encompassing WTA

model, i.e. a model able to account for all the varieties of MEPP (among

them the case of Hénon Heiles systems). However, at the best of my knowl-

edge, we do not dispose of such a model. Finally, it might be thought that

one of the WTA models considered up to now, or possibly all, can be refined

in order to capture the test case proposed and reflect the intuitions of the

scientists. But this obviously shifts the burden of the proof to the partisans

of the WTA approach. However interesting and successful might be the latter

two options, in the next chapter I will concentrate on a completely different

strategy.

To sum up, I did not provide any a priori account of MEPP but I focused

on a MEPP recognized as such in scientific practice. I evaluated the three

WTA accounts seen in the first part on this test case and I showed that they

have difficulties in accounting for the explanatory character of this MEPP.

Moreover, I pointed out that my evaluation and independent considerations

coming from the literature reveal a different picture of MEPP which is in

need to be explored. In this picture specific forms of reasoning, and the

abilities to reason which come with these forms of reasoning, are crucial to

MEPP. In the next (and final) chapter I am going to turn my attention to

this picture of MEPP.
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Chapter 8

A new approach to MEPP in

terms of intellectual tools and

conceptual resources

In the previous chapter I showed that the three WTA accounts presented

in the first part of my dissertation are not able to capture some cases which

have been recognized as genuine in scientific practice. Furthermore, by focus-

ing on qualitative factors which act in MEPP, I put forward the idea that a

pluralist position provides a more promising way for the study of MEPP. The

motivation for this claim lies in the following two remarks: a) the qualita-

tive ingredients which are not captured by the WTA models analyzed can be

identified with specific abilities to reason (for instance, the ability to reason

visually in the Hénon-Heiles case) which are employed in MEPP and which

are seen by scientists as essential to the explanation itself; b) there are other

examples of MEPP in which different abilities to reason are recognized to

play an essential role as well (for instance, the ability to reason asymptoti-

cally for the case of Batterman’s asymptotic explanations).

In this last chapter, I will take into account these considerations and I

will propose my original approach to MEPP. In particular, I am not going to

propose a model of explanation (I will consider explanation as a ‘practice’,
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or better as the result of a practice in science), but a way to account for

the explanatoriness scientists attribute to a specific MEPP in their scientific

practice. In order to do that, I will introduce two categories: intellectual

tools and conceptual resources. I will suggest the idea that, through these

categories, we can capture the qualitative reinforcements which have been

demanded by some authors to the WTA conception of explanation.

Even if I will come back to the notions of intellectual tools and conceptual

resources, let me anticipate here a clarification on my notion of conceptual

resources. In general, I will propose the idea that the intellectual tools are

our abilities to reason when used in the practice of explaining, while the con-

ceptual resources are the concepts which permit the use of our intellectual

tools in a particular situation. I will consider that the conceptual resources

are particular concepts which permit us to reconceptualize a state of affairs

in a fruitful way. The fruitfulness of the reconceptualization comes from the

possibility of applying a particular ability to reason. To take a very simple

example, the concept of ‘integral’ might act as a conceptual resource because

it allows us to redescribe a particular function (for instance, the function

velocity v(t)) as an area (the area under the function a(t)). To see it as a

conceptual resource is to consider that it makes possible such reconceptual-

ization and the application of our abilities to reason (for instance, our ability

to reason visually on a time-acceleration diagram).

I will show how my framework in terms of intellectual tools and concep-

tual resources is supposed to subsume under an umbrella the different species

of MEPP which are assumed to exist according to the pluralist principle1.

Moreover, this framework does provide a way to discriminate between differ-

ent kinds of MEPP and it can be generalized.

The outline of this chapter will be the following. In the next section I

will illustrate Henk De Regt and Dennis Dieks’ recent attempt to capture the

1Observe that, in proposing such an approach, I will not come up with a new WTA
model. My framework will be perfectly compatible with the pluralist hypothesis. I will
come back to this point in the final part of the chapter, in section 8.4, where I will offer a
possible way to generalize my approach.
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notion of scientific understanding. A short examination of their perspective

on scientific understanding is important because, in presenting my notion

of intellectual tools, I will make a parallel with De Regt and Dieks’ notion

of conceptual tools. Soon after I will move to my own approach to MEPP.

I will introduce the two basic notions (intellectual tools and conceptual re-

sources) and I will illustrate, in concreto, how this framework can be used

in the example of MEPP introduced in the previous chapter (the case of the

Hénon-Heiles system). Next, I will show how this approach can be applied to

other species of MEPP which have been considered in the previous chapters,

thus suggesting a way to generalize it. Finally, I will point to the potential

payoff of adopting my framework, to some questions which have not been

sufficiently answered by it, and I will report my conclusions.

8.1 De Regt and Dieks on scientific under-

standing: conceptual tools

In their 2005 paper on scientific understanding [De Regt et al., 2005],

Henk De Regt and Dennis Dieks suggest to consider causality, visualization

and unification as examples of “intelligibility standards” that vary through

history and depend on the specific meso-level scientific context in which they

are employed (where the meso-level scientific context is the context of scien-

tific communities in a specific historical period). They propose the idea that

intelligibility standards function as context-dependent “conceptual tools” for

achieving understanding in science [De Regt et al., 2005, p. 165]. More pre-

cisely, De Regt and Dieks’ idea is that those tools permit the intelligibility

of a scientific theory (in context C) by making possible the circumvention

of a calculatory stage and the direct jump to a conclusion which concerns

qualitative characteristic consequences of the theory itself. This is their cri-

terion for the intelligibility of theories (CIT: criterion for the intelligibility

of theories). Their criterion for the understanding of phenomena (CUP) is

parasitic on CIT and is formulated in the following way: A phenomenon P
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can be understood if a theory T of P exists that is intelligible (and meets

the usual logical, methodological and empirical requirements).

In the unification account of explanation, understanding is obtained through

unfying power [Kitcher, 1989, p. 432], while in the classical version of the

causal account it is the knowledge of causal relations that is decisive for

scientific understanding [Salmon, 1984a, p. 260]. In these theories of expla-

nation the standards of intelligibility (causality and unifying power) have a

universal status and the context does not influence them. By considering

standards of intelligibility as contextual-dependent conceptual tools, De Regt

and Dieks’ approach to understanding is an attempt to reconcile these differ-

ent views of explanatory understanding: scientific understanding is provided

by scientific explanations of diverse types, but the conceptual tools which

participate in every type of explanation are different (and their availability

depends on the scientific community in which they are employed).

To illustrate how their criteria CIT and CUP work, they consider the way

Ludwig Boltzmann presented the kinetic theory of gases in his 1964’s Lec-

tures on Gas Theory [Boltzmann, 1964]. In the introductory section Boltz-

mann considered that a gas can be pictured as a collection of freely moving

molecules in a container. To picture the gas in this way allows us to obtain

qualitative insight on the behaviour of gases. According to this representa-

tion, by identifying heat with molecular motion, it follows that to an increase

of temperature there corresponds an increase in the average kinetic energy of

molecules. Using the same picture of the gas, it is easy to consider that the

collision of every gas molecule with the wall of the container results in a little

push, and the sum of all the molecules-pushing produces the pressure. Hence

“the picture immediately gives us a qualitative explanation of the fact that

a gas exerts pressure on the walls of its container” [De Regt et al., 2005, p.

152]. By using the same picture, again, we do not need to use calculations to

see that if we decrease the volume the pressure will increase. This is because

a decrease of volume means an increase in the number of molecules per unit

of volume, i.e. an increase in the number of impacts per unit of time on the

354



walls of the container, and then an increase in pressure. Finally, De Regt

and Dieks write:

In this way we obtain qualitative understanding of the relations be-

tween temperature, pressure and volume of a gas. If one adds heat

to a gas in a container of constant volume, the average kinetic energy

of the moving molecules –and thereby the temperature– will increase.

The velocities of the molecules therefore increase and they will hit the

walls of the container more often and with greater force. The pressure

of the gas will increase. In a similar manner, we can infer that, if tem-

perature remains constant, a decrease of volume results in an increase

of pressure. Together these conclusions lead to a qualitative expres-

sion of Boyle’s ideal gas law. It is important to note that the above

reasoning does not involve any calculations. It is based on general

characteristics of the theoretical description of the gas. Its purpose

is to give us understanding of the phenomena, before we embark on

detailed calculations. Such calculations are subsequently motivated,

and given direction, through the understanding we already possess

[De Regt et al., 2005, p. 152-153]

According to De Regt and Dieks, the ability to develop qualitative insight

into the consequences of the kinetic theory requires a conceptual tool, which

for the present example is causal reasoning [Eigner, 2009, p. 277]. Gaseous

phenomena, i.e. the behaviour of macroscopic properties of gases, can be un-

derstood in the kinetic theory because the conceptual tool of causal reasoning

permits the intelligibility of the theory (causal reasoning makes possible to

recognize qualitative consequences of the theory without performing exact

calculations). We are able to use the conceptual tool of causal reasoning

because we possess the skill of making causal inferences and Boltzmann’s

theory of gases has the virtue of providing a causal mechanical picture. The

contextual dependence is given by the fact that a scientific theory T could be

intelligible for a scientist who operates in context C (a scientific community,

like that to which Boltzmann belonged) while it might be unintelligible for a

scientist belonging to another context C ′. Hence, again, conceptual contin-

355



gent tools depend on the skills of the scientific community during a precise

historical period or in a very specific methodological context2.

This rapid presentation of De Regt and Dieks’ view will be useful in the

illustration of my notion of intellectual tools, and in my discussion of the link-

age understanding-MEPP which I will address later in the chapter. Before

closing the present section and moving to my own approach to explanation,

let me add a clarification concerning De Regt and Dieks’ conception of un-

derstanding.

As we have seen above, these authors consider that scientific understand-

ing is obtained from an appropriate combination of “intelligibility-enhancing

theoretical virtues” of a theory [De Regt et al., 2005, p. 142], i.e. virtues of

the theory which contribute to the intelligibility of that theory, and specific

skills possessed by the scientists in a determinate scientific community. Nev-

ertheless this means that, contrary to what the words “intelligibility” and

“contextual” might suggest to the reader, their idea is that scientific under-

standing is neither subjective nor individual. They accept, of course, that

there is a subjective ingredient which participates in scientific understand-

ing. This ingredient is given by our capacity to intelligibly grasp a scientific

theory. Nevertheless, for De Regt and Dieks this is not a sufficient condition

for understanding. Theoretical virtues of theories, as the acquisition of some

skills in a particular context, contribute to understanding as well and make

it possible to fulfill their criteria CIT and CUP3. This point will be useful for

2In a recent paper, Steffen Ducheyne has proposed a test case to show that De Regt and
Dieks’ criterion for the intelligibility of theories CIT is too strong and must be modified or
extended [Ducheyne, 2009]. He argues that, although endorsing different (and incompat-
ible) standards of intelligibility, Newton and Huygens could understand their respective
gravitational theories (both qualitatively and quantitatively). According to Ducheyne, “if
De Regt and Dieks’ criterion was adequate, there would be a deep incommensurability
between Newton’s and Huygens’s gravitational theories: since Newton and Huygens did
not share the relevant intelligibility-enhancing theoretical virtues, both could not under-
stand one another’s theory quantitatively. Moreover, since De Regt and Dieks furthermore
assume that further quantitative understanding requires that a theory should be seen as
intelligible in the first place, Newton and Huygens could not understand each others’
theories quantitatively” [Ducheyne, 2009, p. 256]

3De Regt and Dieks point out this hybrid, not purely subjective and invididual, nature
of scientific understanding, in a passage of their 2005 paper [De Regt et al., 2005, p. 143].
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what I am going to present in the next section, where I will draw attention

to the difference that there is between my notion of intellectual tools and De

Regt and Dieks’ notion of conceptual tools.

8.2 Intellectual tools and conceptual resources

Even if we agree that pluralism is the principle which governs the study of

MEPP, and that our methodology must necessarily go in the bottom-up di-

rection, a fundamental problem has not been addressed yet. It seems that to

accept that MEPP come in different types suggests the idea that we get lost

in this jungle of possibilities. However, we would like to know if something

more can be said about some common characteristics shared by the different

species of MEPP which can be captured by adopting the pluralist approach.

To put it in other words, we want to see if there exist a language (i.e. if there

exist some categories) through which the different species of MEPP can be

described and distinguished.

Recall now the moral from the testing of the three WTA accounts I pro-

posed in the previous chapter and the demand for qualitative reinforcements

to be used in models of MEPP expressed by various philosophers. Moreover,

consider the following quote from Jamie Tappenden:

The theoretical virtues that led to the choice of a mathematical frame-

work (and that consequently inform the ideas of understanding and

explanation that the framework induces) influence the explanation of

physical events as well [Tappenden, 2005, p. 177]

What are these theoretical “virtues” which are responsible for the choice

of a mathematical framework and which inform the idea of explanation that

the framework induces? I will try to offer a possible answer in what follows,

by proposing the idea that the virtues in question regard the capacity that

some mathematical concepts have to make the explanation more ‘concep-

tually accessible’. This conceptual access is permitted to us by the use of
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our abilities to reason. Those modes of reasoning are exactly the qualitative

reinforcements that have been demanded to the WTA models.

The view I am going to propose is based on a paradigm very different

from that which stands behind the majority of the models of MEPP which

I have analyzed in the previous chapters. For the most part, in fact, these

models were based on the idea that the feature which contributes to the ex-

planatory power of a MEPP is an objective feature, i.e. a feature which does

not depend upon the observer performing the explanation. According to this

view, the task of a theory of explanation is to identify this particular fea-

ture (a particular quality of the mathematical formalism, a particular state

of affairs, a fact, a relation which holds in the world or in mathematics),

because it is this feature which ‘explains’. For instance, in Steiner’s model

this particular feature was given by a property of a mathematical object or

structure involved in the explanation (‘characterizing property’). In Kitcher’s

model, the search for the best unifying systematization of our best beliefs is

dependent on the fact that there exists such unification ‘trend’ in the world

(and the notion of pattern is intended to capture this particular feature of

the world). In Pincock’s case, we have seen how the representational ca-

pacity of the graph was a source of explanatory power due to the ability

of the graph to pick out structural relational features of bridge-system. In

this case, the explanatory power was given by the fact that a mathematical

structure has the quality to pick out some feature of the real world. This

quality, together with the existence of the structural relational features of the

actual system, is something independent from us. On the other hand, my

approach shifts the attention to the particular forms of reasoning which are

employed in MEPP. To put it in a very simple way, while these theories of

MEPP have given importance to what explains, which is independent from

us and which according to these models does characterize a genuine expla-

nation, my approach is to consider that it is the way in which we identify a

particular state of affairs that does contribute to the genuineness of a MEPP.

This marks, I think, an essential difference with respect to some pictures of
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explanation that we have seen up to now. In my view, a genuine explanation

does not result from the identification of a state of affairs or a property of

the world or mathematics, but rather from the fact that we can look at that

property or state of affairs in a specific way. Very roughly, I consider that

the explanatory power is not given by any particular feature, but by how a

feature or a phenomenon are explained. In this sense, my approach is similar

to Batterman’s and Van Fraassen’s. In fact, Batterman considered that it is

a particular kind of reasoning (asymptotic reasoning) which is essential for

explaining and which characterizes a specific kind of explanation (asymptotic

explanation). In Van Fraassen we have seen how an answer to a why-question

(an explanation) gives “the sort of information the questioner has in mind”,

and therefore also in this case the way in which we explain is crucial. How-

ever, in the details, my approach considerably departs from Batterman’s and

Van Fraassen’s. In particular, I am going to argue that when we can recon-

ceptualize a particular state of affairs (through conceptual resources), and

this reconceptualization does permit to use our abilities to reason, we do

have a genuine explanation. Of course, this is not to say that explanation

is purely subjective. Rather, I will argue that there is a subjective factor

(ability to reason) which comes into play. But other ingredients are involved

as well. As I will show in what follows, the reconceptualization permits us

to apply an ability to reason. This reconceptualization is permitted only

by particular mathematical concepts (conceptual resources). Therefore my

approach is not subjective because these mathematical concepts have some

virtues (they permit a reconceptualization), and this is something which is

completely independent from us.

8.2.1 Intellectual tools

In order to account for a MEPP I introduce two categories: intellectual

tools and conceptual resources. The intellectual tools are our abilities to rea-

son when used in the practice of explaining. For instance, it is generally
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recognized that we acquire the ability to reason analogically4. This means

that we are able to apply analogical reasoning in different situations, where

analogical reasoning is the process of reasoning by analogy, i.e. to reason and

learn about a new situation –the target analog– by relating it to a more famil-

iar situation –the source analog– that can be viewed as structurally parallel

[Holyoak et al., 1997]. This particular kind of reasoning is used extensively in

our everyday-life. It is used in linguistic, when we make a textual comparison

between two words (or sets of words) and we highlight some form of semantic

similarity between them; in speech, when we use metaphors (a metaphor is

a figure of speech that constructs an analogy between two things or ideas);

even in anatomy when we consider two anatomical structures to serve similar

functions but are not evolutionarily related. It can also be used in morality:

if it is wrong to do something in a situation A, and situation B is analogous

to A in all relevant features, then it is also wrong to perform that action in

situation B. Nevertheless, the ability to reason analogically is recognized to

be extensively used in science as well. To take two very straighforward cases,

consider the analogy between the atom and the solar system, which is given

in order to stress the relative similarity of behaviour of the systems, or that

between billiard balls and gas molecules5. To come to my view, I consider

that an ability to reason (such as the ability to reason analogically) does

function as an intellectual tool when it is used in the practice of explaining6.

4Although it is not relevant here to focus on the process of acquisition, it is important
to note that the ability to reason analogically is not considered as a primitive cognitive
ability but it is seen as emerging and developing under the guide of certain basic constraints
([Gentner et al., 2001], [Holyoak et al., 1997]).

5By explicitly comparing the atom with a (tiny) solar system the learner is provided
with a useful starting point for learning about atomic structure and the forces acting in
an atom. Observe, however, that there are clearly limitations in the use of analogies in
explaining scientific ideas. For instance, some aspects of the target (the atom) which we
wish to emphasize or explain might not have a counterpart in the source system (the solar
system), thus making inadequate the use of analogical reasoning [Taber, 2001].

6Concerning the case of analogical reasoning, observe that there is a number of philoso-
phers who welcome the idea that the use of this kind of reasoning in science does contribute
to scientific explanation ([Hesse, 1966], [Cartwright, 1983]). Nervetheless, in what follows
I will concentrate on two other abilities to reason: the ability to reason visually and that
to reason asymptotically, with a particular accent on the former.
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Intellectual tools are not the unique ingredient in my approach to MEPP.

To consider an ability to reason as an intellectual tool presupposes, in my

view, that there are particular concepts which permit the use of that ability.

The other important notion to be introduced, which concerns those particu-

lar concepts, is that of conceptual resources. Before passing to this, however,

let me add an observation concerning my notion of intellectual tools and De

Regt and Dieks’ notion of conceptual tools.

In section 8.1 I have introduced De Regt and Dieks’ account of scien-

tific understanding, together with their notion of conceptual tools. Even if

I borrow the general idea of intellectual tools from their account, and more

precisely the idea that there exist some ‘tools’ which permit a qualitative

insight in scientific practice, there is a fundamental difference between my

notion and De Regt and Dieks’7. I totally agree with De Regt and Dieks

on the importance of the particular skills of the scientists in the process of

understanding and explaining a phenomenon, and on the fact that such skills

can vary from context to context:

[...] possessing a theory is not enough: in addition one should be

able to use the theory to derive predictions or descriptions of the phe-

nomenon. And this implies that not only knowledge of laws and theo-

ries (and background conditions) but also particular skills of the user of

this knowledge are involved in achieving the epistemic aim of science.

This introduces a pragmatic element that, we will argue, is part of an

epistemically relevant notion of understanding [De Regt et al., 2005,

p. 142]

However, they consider that it is a property of some theories to have spe-

cial pragmatic virtues such as visualizability (or simplicity), and these virtues

7Observe that De Regt and Dieks welcome the idea that the notion of concep-
tual tools also has a potential application in the realm of mathematical understanding
[De Regt et al., 2005, p. 163-164], although account does not explicitly refer to mathe-
matical explanation and their examples of conceptual tools do not concern purely math-
ematical cases. Moreover, in a private conversation Henk De Regt has confirmed to me
that he sees as a potential promising step the use of the notion of conceptual tool also in
connection with mathematical explanation.
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influence our epistemic access to the theories themselves (our intelligibility

of them):

Not only skills of scientists but also properties of theories play a role in

this dimension: whether scientists are able to apply a theory to a par-

ticular phenomenon depends both on their skills and on the pragmatic

virtues of the theory, e.g., visualizability or simplicity. These virtues

may contribute to the intelligibility of the theory, thereby facilitating

the use of the theory in the construction and application of models,

and accordingly they contribute to the achievement of the epistemic

aims of science. The appropriate combination of scientists’ skills and

intelligibility-enhancing theoretical virtues is a condition for scientific

understanding [De Regt et al., 2005, p. 142]

In other words, the fact that a theory is intelligible depends on contex-

tual factors (capacities, background knowledge and background beliefs of the

scientists in a particular context), but also from the fact that the particular

theory under study has the property (or virtue) to be, for instance, visu-

alizable. In De Regt and Dieks’ example concerning the kinetic theory of

gases, we are able to use the conceptual tool of causal reasoning because we

do possess the skill of making causal inferences and Boltzmann’s theory of

gases has the virtue of providing a causal mechanical picture. My idea of

intellectual tools diverges from their notion of conceptual tool on the lat-

ter point. I do not consider that a theory (or a mathematical framework

under study) has virtues such as visualizability, or the virtue of providing

a causal-mechanical picture. It is hard to see how a classification of theo-

ries according to their ‘capacity to be visualizable’ or ‘capacity to provide

a causal mechanical picture’ might be obtained. Furthermore, it should be

noted that physical phenomena are rarely explained or understood by ap-

pealing to a single theory. For instance, in Batterman’s example discussed

in section 6.2 there are at least two physical theories involved (the kinetic

theory and the theory of condensed matter), plus a mathematical theory

(renormalization group theory). What is the theory which contributes to the
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understanding of the phenomenon of universality at critical temperature?8

Very differently, I consider that we do possess abilities to reason and these

abilities are employed as tools (this is why I call them ‘intellectual tools’) in

a particular situation and convey the sense of explanatoriness that we recog-

nize in scientific practice. For instance, to take Boltzmann’s example as an

illustration of my point, I consider that the kinetic theory of gases does not

have the virtue to give us a causal mechanical picture. Rather, we do have

a particular ability to reason (the ability to reason causally) and this ability

is used within the kinetic theory. This ability to reason is extra-theoretical,

i.e. it is independent from the theory (or from the mathematical framework

in question), and it belongs to what De Regt and Dieks call the “skills” of

the scientists doing the explanation. In this sense, an ability to reason is

subjective but not individual because the very same ability is used by the

members of a scientific community9.

This is not the end of the story. The possibility of applying such abilities

to reason is permitted by the use of particular concepts, which I call “concep-

tual resources”. These concepts have a particular virtue: they do permit a

reconceptualization of a particular state of affairs10. Here I will concentrate

on the case in which the conceptual resources come from mathematics.

8Let me note as an aside that my observation here points to a pending aspect of De Regt
and Dieks’ proposal. They consider virtues of theories. However, in order for their account
of scientific understanding to be tested or even refined, they need a precise characterization
of what they regard as a ‘theory’. Moreover, they should discuss the possibility that two
(or more) theories having a particular virtue could participate in the understanding of the
same phenomenon.

9For instance, our ability to reason analogically is subjective because it depends on our
intellect, but its use is shared within a scientific context and therefore this ability is not
individual.

10I will also consider the possibility that conceptual resources permit a conceptualization,
i.e. the making of a new concept from a previously known state of affairs. I will give an
example of such a situation in section 8.4, when using my approach to account for Kitcher’s
example.
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8.2.2 Conceptual resources

The conceptual resources are the concepts which permit the reconceptu-

alization of a particular state of affairs and allow the use of our abilities to

reason in a particular MEPP.

First of all, let me illustrate what I take to be the notion of reconceptual-

ization11. We can describe the set of the real numbers R as the power set of

the set of the natural numbers N (the power set of the naturals can be put

in a one-to-one correspondence with the set of the real numbers). Thus the

notion of ‘power set’ allows us to redescribe, or reconceptualize, the set of

the reals as the power set of the naturals. The notion of ‘vector’ is another

example of a concept which permits a reconceptualization. It provides an

interpretation of any quantity X that has both a magnitude and direction

as a point in a vector space. The result of the interpretation is a point in a

vector space, of course, but this point can be thought as a redescription of

the original quantity X.

Observe, however, that to recognize that the notion of vector (or that of

power-set) permits a reconceptualization is not enough to give it the status of

conceptual resource. A further requirement is that this reconceptualization

must be fuitful, i.e. it must permit the use of an ability to reason. The moral

is that the virtue possessed by a concept to permit a reconceptualization

is not sufficient to consider that concept a conceptual resource. Perhaps, a

quick and “explicative” analogy is to consider that the conceptual resources

act as the ribosomes during the translation process in the synthesis of pro-

teins (Figure 8.1). Ribosomes (conceptual resources) bind to the messenger

RNA (our mathematical formalism), thus permitting the reading and the

matching of the transfer-RNA (our ability to reason –intellectual tool) which

will finally lead to the synthesis of the protein (which corresponds to our

genuine MEPP). The virtue ribosomes have to bind to the messenger RNA

11Unfortunately, I can only provide here an intuitive connotation of it. However, I think
that the idea is sufficient for what I claim below. I leave the task of offering a rigorous
definition for a further study.
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Figure 8.1: Diagram representing the translation process in the synthesis of
proteins.

is not sufficient for the matching of the transfer-RNA and the final synthesis

of the protein. In order for the synthesis of the protein to be successful, ri-

bosomes must permit the reading and the matching of the transfer-RNA. In

order for the explanation be ‘successful’, conceptual resources must permit

the reconceptualization and the use of an ability to reason.

The analogy between my schema and the translation process in the

synthesis of proteins can be pushed a little further12. Consider our abili-

ties to reason as belonging to a continuous strand, which intuitively can be

identified with our intellect (Figure 8.2). Every ability in the strand has a

specific ‘form’, i.e. it is intrinsically distinct, as in the continuous strand

of transfer-RNA there are three distinct base regions called “anticodons’13.

12Evidently the translation process in the synthesis of proteins is much more complicated
than the illustration I follow here. However, this simplification is advantageous to illustrate
my ideas, and this is why I adopt it.

13An anticodon is a unit made up of three nucleotides. It corresponds to the three bases
(three nucleotides) of the codon in the messenger-RNA. For instance, the codon for the
amino acid lysine is AAA (where A stands for ‘Adenine’); the anticodon of a lysine tRNA
might be UUU (where U stands for ‘Uracil’). In Figure 8.1, the codon for proline is CCG,
and its complementary anticodon is GGC.
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Figure 8.2: A possible representation of my framework.

Each anticodon on the transfer-RNA molecule can base pair to a correspond-

ing three base (codon) region on the messenger-RNA (as showed in Figure

8.1). This particular three base region in the messenger-RNA strand does

correspond, in my analogy, to a particular part of the mathematical formal-

ism where the reconceptualization and the application of an ability is made

possible. Finally, the binding of our abilities to reason to the mathematical

formalism is permitted by the conceptual resources, which act as the ribo-

somes in the protein synthesis14.

14It might be observed here that my analogy between conceptual resources and ribosomes
can be thought as not fully adequate. This is because in my diagram (Figure 8.2) I
represent conceptual resources as having a different form, thus suggesting the idea that they
have a different structure. On the other hand, even if archaeal, eubacterial and eukaryotic
ribosomes differ in their size and composition, ribosomes of a particular organism are
considered to have a very similar structure and size. For example, eukaryotic ribosomes
are between 25 and 30 nanometers and share an extremely similar structure. This is
why, from this perspective, the analogy is not fully adequate. However, note that with
this analogy I want to stress another point. The function of ribosomes in a particular
cell-type (for instance, in eukaryotic cells) is the same, and namely that of permitting
the matching of the transfer-RNA with the messenger-RNA and the consequent protein
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In Figure 8.2 I represented the case of a particular ability to reason (tri-

angle D) whose use is permitted by a conceptual resource (object c). The

ability to reason D is therefore an intellectual tool. The attentive observer

might have noted that the conceptual resources a and c permit the bind-

ing of the very same ability to reason (the triangle D), even if they have

a different form. This state of affairs expresses the idea that the use of an

ability to reason (for instance, the triangle D) can be permitted by different

conceptual resources (a and c in the illustration). To put it in a more in-

tuitive way, one conceptual resource can be available in a scientific context

and can permit the use of an ability to reason, even if other conceptual re-

sources might permit the use of the same ability as well (in the very same

context or in another context, to explain the same phenomenon or different

phenomena). In the same scientific context shared by James and Dan (for

instance, James and Dan both work on dynamical systems and they agree

on the mathematics they use in their research work), scientist James might

prefer a to use D, while scientist Dan might opt for c to use the same ability

D. In a situation when James and Dan do not share the same context (for

instance, James lived in 17th century and Dan is a 20th century scientist),

it is reasonable to think that they will adopt different conceptual resources,

even if they will have at their disposal the same ability to reason D. If we

think at our abilities to reason as a set X, and at the conceptual resources as

a set Y , we can model this intuition by saying that the function f : X −→ Y

is not one-to-one (injective).

There is, I think, much more to say and to investigate about the possible

combinations of our abilities to reason and conceptual resources in MEPP.

Perhaps, when looking at Figure 8.2, it is very natural to ask if the following

two cases are possible:

synthesis. Moreover, there is no structural but considerably functional homology between
prokaryotic and eukaryotic ribosomes. This is something which is well mirrored in my
analog, because every conceptual resource has exactly the same function: it permits a
reconceptualization and the application of our abilities to reason. It is this functional
aspect that I would like to emphasize in my analogy between ribosomes and conceptual
resources.
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(1) two or even more conceptual resources can be used together to permit

the use of an ability to reason.

(2) one conceptual resource can permit the use of more than one ability to

reason at the same time.

I think that both the cases are plausible. The first case can be well il-

lustrated with a straightforward hypothetical example. Consider that math-

ematical concept A makes possible a reconceptualization O1
A→ O2, where

O1 and O2 are two distinct state of affairs, while another concept B makes

possible a reconceptualization O2
B→ O3. Therefore it will be possible to

say that O1 is redescribed by O3 (reconceptualization, in this sense, can be

considered as a transitive relation). If the final reconceptualization O1
AB→ O3

permits to use an ability to reason, for instance the ability to reason visually,

we will be exactly in the situation expressed by (1): two conceptual resources

can be used together to permit the use of an ability to reason. Regarding the

situation expressed by (2), things are a little bit more complicated. An illus-

tration of this situation would require a hypothetical case of MEPP in which

two (or more) abilities to reason are employed at the same time. Perhaps an

interesting and very simple case would be that in which the ability to reason

analogically is used in combination with the ability to reason visually. For

instance, by considering that two systems are analogous we might trace a

diagram and reason visually on that diagram, and these operations can be

performed at the same time. Our ability to reason visually can help us to

better grasp the analogy, or it can provide new insight into the similarities

shared (or not) by the two systems. This is what happens, I think, in the

present situation, where I am trying to ‘explain’ to the reader how my frame-

work works by using my ability to reason analogically (through the analogy

between the translation process in the synthesis of proteins and the func-

tioning of my framework) and my ability to reason visually (by using shapes

and trying to connect the elements on the diagram 8.2 in the right way). I

am using both these abilities, at the same time. Undoubtedly, in this case

mathematics plays no role and it would be meaningless to speak of mathe-
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matical explanation. Furthermore, it might be thought that in this situation

the ability to reason visually is not a distinct ability but it is embedded in

the ability to reason analogically. This is because the analog components are

visualizable on a diagram. Although at this stage I do not have any argu-

ment against this possibility, I think that the ability to reason analogically

and that to reason visually should be considered as distinct abilities. And

this despite the fact that some analogies make the analogs visualizable on a

diagram or a schema. For instance, in their paper“Analogy Theory for a Sys-

tems Approach to Physical and Technical Systems” [Hezemans et al., 1991],

Hezemans and van Geffen specifically focus on the conditions which permit

the use of analogies in science and write: “an analogy can be critically ap-

plied, such that it can be seen visually” [Hezemans et al., 1991, p. 170]. This

may suggest that the visualization of such analogy, and more importantly

the reasoning on the analogy itself, does require a further step, i.e. the ap-

plication of a distinct ability to reason.

Let me provide a more concrete example of situation (2). This example

requires, in addition to the use of the two abilities, the fact that the use of

this combination of abilities has been made possible by a particular mathe-

matical concept (a concept that has permitted the reconceptualization of a

specific state of affairs and the application of the two abilities). Consider, for

instance, the following case. In his The Science of Mechanics [Mach, 1893],

in order to illustrate the virtual work principle and explain the difference

between stable and unstable equilibria of a mechanical system, Ernst Mach

proposes to regard a system of bodies acted by various forces as a machine

for doing work. A hanging weight is attached to the system and this weight

carries a pencil pressing against a sheet of paper, carried past it horizontally.

When the system is allowed to move, “the depth of the hanging weight be-

low its original position will be an indicator of the work done by the system

in reaching any other configuration. The pencil will record this depth in a

curve, as in Figure” [Mach, 1893, p. 64]. I have reported Mach’s diagram in

Figure 8.3. The curve expresses the evolution of the system, and its maxima
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Figure 8.3: Mach’s original diagram [Mach, 1893, p. 65].

and minima are, of course, the equilibrium points of the system15. When

the system arrives at a position of equilibrium, the work done is in general

a maximum or a minimum. The weight is at a turning point of the curve.

The maxima are unstable because, if the weight is disturbed (its position

is slightly changed), it will descend due to the effect of gravity. This point

corresponds to the minimum amount of work that can be done by the sys-

tem. On the other hand, the minima are stable because, when its position is

slightly changed, the weight will return to its position because of the force of

gravity. In this case, the system can only do work by returning to the posi-

tion of equilibrium if disturbed. Stable equilibrium therefore corresponds to

a maximum of work done by the system, unstable equilibrium to a minimum.

Finally, when the curve remains horizontal (as at d, e), the system is in a

state of “neutral” equilibrium, “as when a sphere rests on a horizontal plane”

[Mach, 1893, p. 65].

In this case we are using two abilities to reason, namely that to reason

analogically (by using the analogy of the falling weight) and that to reason

visually (by visualizing the behavior of the system through the weight-curve

diagram). Furthermore, it is the concept of the global extrema of a function

which permits us to reconceptualize the problem and apply these two abili-

15See [Panza, 1995] for a discussion of Mach’s example.
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ties16.

I assume that there is a mutual interaction between intellectual tools and

conceptual resources: we acquire conceptual resources through the use of in-

tellectual tools and vice versa (for instance, through education and practice

in science). Intellectual tools, like conceptual resources, are therefore not

unchangeable but can vary over time (I will come back to this point below,

in subsection 8.6.3).

After this short presentation of the notions, it is now time to pass to a

more concrete setting. In the next section I will illustrate how this framework

functions by applying it to the example of MEPP considered in the previous

chapter.

8.3 Intellectual tools and conceptual resources

at work

Consider again the case of the Hénon-Heiles system, where, when faced

with two mathematical paths to study the same phenomenon (the behaviour

of the particle in the considered bidimensional potential), scientists do re-

gard as explanatory the formalism involving the Poincaré map. Recall that,

studying on the diagram the Poincaré section for various energies, we obtain

information about the dynamic of the system at that energy (Figure 7.2).

The scientist’s ability to reason visually on the diagram is considered then

as essential to explain why the system has that particular behavior at the

fixed energy. However, as we have seen, the possibility of performing such a

qualitative analysis is permitted by the use of the Poincaré map, a particular

function which “dots” the solutions (orbits) on the respective section. On

the view I am proposing, the intellectual tool which is used is our ability to

reason visually, and its use is made possible through the particular function

16Naturally, there is another situation which can be imagined as well: various conceptual
resources which permit the application of more than one ability to reason. Observe,
however, that this case is somewhat analogous to case (1) and similar considerations hold
for it.
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Poincaré map, which acts as a conceptual resource.

In the case of the Hénon-Heiles system we fix the Energy to reduce the di-

mensionality of the space by one, and then we choose the qypy plane (qx = 0)

as 2-dimensional cross section (S) of the hypersurface in the phase space.

By doing that, we obtain a discrete dynamical system of the continuous 3-

dimensional Hamiltonian flow (the flow of trajectories in phase-space), with a

state space that is one dimension smaller than the original dynamical system.

This reduced system inherits many properties, e.g. periodicity or aperiod-

icity of the original system, and can be interpreted as a discrete function

p : S −→ S which associates consecutive intersections of a trajectory of the

3-dimensional flow with the surface of section S. Function p is exactly the

Poincaré map.

Now, there is a fundamental difference in introducing the Poincaré map

in our reading of the formalism. As Aubin and Dalmedico point out:

This method [the use of Poincaré map] made it natural to think

about the states of the system considered as points in phase space

[Aubin et al., 2002, p. 286].

As we have seen in the previous chapter, when I illustrated the Hénon-

Heiles example, the consecutive disposition of the points trace a (regular or

scattered) sequence on the surface of section (Figure 7.2). By identifying the

points with the states of the system, we associate a particular disposition

of points with a particular behaviour of the system. To reconceptualize the

states of the system as points is therefore essential to grasp, by observing

the successive disposition of the points on the surface of section, qualitative

conclusions about the behaviour of the system. For instance, this convinces

us that a point which is consecutively mapped into points very close to each

other will represent a dynamical state which gives rise to regular motion.

Furthermore, in grasping such qualitative information from the diagram we

are reasoning in a very particular way. More precisely, we are using our

ability to reason visually. The Poincaré map is thus the conceptual resource

which permits the use of our ability to reason visually on a diagram (at some
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particular step in the reasoning). Without the introduction of the Poincaré

map it would have been impossible to make use of this particular ability to

reason.

Obviously, before the step which concerns the qualitative (visual) anal-

ysis of Poincaré map in the diagram, we do exact calculations through the

Hamiltonian formalism. However, I think that this should not be considered

as a real difficulty with respect to what I said above. Before arriving to the

step which involves the visualizable situation, some calculations are neces-

sary. What is really central to my discussion is that at a particular stage

in the mathematical procedure we grasp the behavior of the phenomenon by

visualizing its dynamic through the Poincaré map, and the role of mathe-

matics is essential in performing such a move.

This evaluation reflects the intuitions of the scientists who consider one

mathematical path (that involving the phase-space and the Poincaré map)

as more powerful and explanatory than another. To choose this route as the

explanatory one, again, derives from the fact that a conceptual resource per-

mits the application of an ability to reason. The Poincaré map has the virtue

to permit a reconceptualization, and such a reconceptualization is what per-

mits us to reason visually and grasp the behaviour of the system. Of course,

other mathematical concepts might have permitted such a reconceptualiza-

tion as well. And the use of such theoretical resources clearly depends upon

our scientific education and the scientific context we are working in.

In the next section I am going to propose the idea that my language of

intellectual tools and conceptual resources can be used to describe the cases

of MEPP proposed by Batterman, Pincock, Kitcher and Steiner. Moreover,

my approach will offer a way to differentiate them and it will support the

idea that they do represent genuine examples of MEPP, thus preserving the

general intuitions of the authors who investigated these cases through their

respective accounts.
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8.4 Generalization

A detailed application of my framework to the cases discussed by Batter-

man, Pincock, Kitcher and Steiner would require an in-depth analysis which

cannot be proposed here. However, let me indicate very shortly how my

schema is supposed to account for such MEPP.

8.4.1 Batterman

As I said in the section 8.2.1, our ability to reason visually in not the

only intellectual tool we use in our explanatory practices and others abilities

to reason are at our disposal as well. An example is provided by the ability

to reason which acts in Batterman’s example of asymptotic explanation (the

explanation offered in condensed matter physics for the universality of criti-

cal phenomena).

Asymptotic reasoning is the kind of reasoning which is generated from

asymptotic techniques. Asymptotic techniques permits the elimination of

causal and physical details which are not essential to the explanation of the

phenomenon, thus highlighting relevant factors for the phenomenon which is

explained. Observe, however, that Batterman considers that the throwing

away of the causal and physical details which are not relevant to the physical

phenomenon under study is given in these techniques by the passage to a

limit (a limiting operation). For instance, in the example of the renormal-

ization group explanation of the universality of critical phenomena, it is in

the thermodynamic limit (limit in which the number of particle of the system

approaches infinity) that the fixed point of the recursion relation converges to

the exact critical temperature. As I showed in chapter 6, the main idea in the

renormalization group procedure investigated by Batterman is to switch from

an intractable problem (analytically intractable Hamiltonian) to a tractable

problem (analytically tractable Hamiltonian), preserving the functional form

of the initial Hamiltonian. To assure that the transformed Hamiltonian de-

scribes a system with the same behavior of the original systems, thermo-
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dynamic parameters are properly adjusted (renormalized). More precisely,

the strategy of the RG analysis is based on a systematic rescaling of the

effective Hamiltonian which describes the system near the critical point. In

this context, the taking of the thermodynamical limit is essential to use the

renormalization group and therefore to eliminate the particular causal and

physical details which are not essential to understand the phenomenon of

universality. As batterman writes:

Limits are a means by which various details can be thrown away (For

instance, in taking the thermodynamic limit in the context of explain-

ing fluid behavior, we eliminate the need to keep track of individual

molecules and we remove details about the boundaries of the container

in which the fluid finds itself.) [Batterman, 2010, p. 20]

In the thermodynamic limit, as it is employed in the explanation of

the universal scaling of the order parameter for critical systems, there

emerges a host of divergences and singularities. Crucial among these

is the divergence of the so-called correlation length. This implies a

loss of any sort of characteristic length scale and allows the various

systems to be compared with one another asymptotically. Such a loss

of scale is required to demonstrate the genuine qualitative change in

the states of matter that occur at criticality [Batterman, 2010, p. 18]

What characterizes asymptotic reasoning, therefore, is not the simple

thought process of eliminating causal and physical details of the system.

Otherwise, asymptotic reasoning would correspond to the Aristotelian pro-

cedure of abstraction, through which we ‘remove’ specific properties from an

object to study a particular phenomenon. Rather, the thought process which

characterizes asymptotic reasoning consists in the study of the nature of an

asymptotic regime by considering only these features which have been iden-

tified as relevant by asymptotic methods. This marks an essential difference

with the Aristotelian procedure of abstraction. Asymptotic explanation is an

explanation which is essentially characterized by this kind of reasoning. But

how can my perspective on MEPP accommodate such type of (asymptotic)
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explanation?

Where we appeal to the thermodynamical limit we use the concept of

limit to redescribe a finite system of n particles as a system of infinite parti-

cles. Observe, then, that the concept of limit permits us to reconceptualize

the system in a different way (as made of infinite particles). The mathe-

matical concept of limit acts, according to my terminology, as a conceptual

resource. Now, the identification of the physical quantities which does not

affect the particular phenomenology in the limiting regime is not given by

asymptotic techniques but requires something more. What the asymptotic

method (through the renormalization group procedure) tells us is that at

critical temperature there are some features which are irrelevant to the es-

timation of the critical exponents. Nevertheless, it does not suggest what

are the structural features of the system which are relevant or irrelevant to

the asymptotic behavior. For instance, in his paper “Infinite Systems in SM

Explanations: Thermodynamic Limit, Renormalization (Semi-) Groups, and

Irreversibility” [Chuang, 2001], Liu Chuang observes:

If one is looking for a causal explanation for the critical phenomena,

i.e., why we have the same asymptotic behavior (cf. Balashov 1997)

near criticalities, the renormalization group does not deliver it. It does

not tell us which compositional or structural features are relevant or

irrelevant for the asymptotic behavior. What it does tell us is, at a crit-

ical point, which features are relevant or irrelevant to the estimation

of the critical exponents. We should note that the space of Hamiltoni-

ans is not a configuration space, and the flows on Hamiltonian space

are not physical processes. Therefore, the relevancy of the flows to

a fixed point determined by the renormalization group should not be

confused with the relevancy to the asymptotic processes of systems in

the same universal class approaching their respective critical points.

The fact that the latter may provide an explanation for the former

shows why the former alone is not yet an explanation for the universal

asymptoticity of critical phenomena. [Chuang, 2001, p. S337]
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To pass from the features which are irrelevant to the estimation of the crit-

ical exponents to the structural features which are irrelevant for the asymp-

totic behavior requires a further step. To put it roughly, the renormalization

group alone does not suggest what actual features of the physical system do

not affect the value of critical exponent. For instance, the fact that correla-

tion lengths diverge ‘on the road to’ criticalities does not say anything about

the actual system, but it is informative about how microscopic variables at

different positions are correlated. However, we associate this divergence with

the fact that certain kinds of micro-degrees of freedom become asymptoti-

cally frozen and irrelevant to the behaviour of the real system, i.e. that the

microscopic composition of the system is irrelevant to the behaviour of the

system at criticality. To perform such a step is to employ a specific ability to

reason, which I call ‘ability to reason asymptotically’. This specific ability is

the ability to recognize, in an asymptotic/limiting regime, what are the phys-

ical features which are not essential to the description of the phenomenon.

This is crucial to explanations such as that of the universality of critical phe-

nomena. It is this ability to reason, in fact, which permits us to look at the

particular phenomenology in the limiting regime as representative of a class

of physical systems. For instance, by recognizing that, in the limiting regime,

the microscopic composition of the fluids are not essential to obtain a partic-

ular value for the critical exponent, we can consider that the particular value

of that critical exponent is shared by other fluids as well. Note, however,

that it is only through the reconceptualization permitted by the concept of

limit that it is possible to use this particular ability to reason. The reconcep-

tualization of the system (to see the system as made by an infinite number

of particles) is essential to have access, through the renormalization group,

to the limiting regime, where this ability to reason is applied. Finally, in

line with Batterman, I welcome the idea that this should be considered as

a particular species of MEPP (asymptotic explanation), and precisely as an

explanation which uses the ability to reason asymptotically as an essential

ingredient.
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8.4.2 Pincock

Recall now Pincock’s account of abstract explanations, presented in chap-

ter 5. For Pincock an abstract explanation is an explanation that appeals

primarily to the formal relational features of a physical system. As an illus-

tration of such species of explanation, Pincock focuses on the explanation (in

terms of graph theory) of the inability to make a particular path across the

Königsberg bridges. In that case, the impossibility of walking across all of

the bridges exactly once and returning to one’s starting point is explained by

appealling to the fact that the system bridges-paths exhibits the structure of

a non-Eulerian graph17. In his words:

In the Königsberg bridges case, the explanatory power is tied to the

simple way in which the model abstracts from the irrelevant details of

the target system. It throws out what is irrelevant and highlights what

is relevant. Crucially, what is relevant is the mathematical structure

found in the target system itself. [Pincock, 2011a, p. 3]

Like Batterman’s asymptotic explanations, Pincock’s abstract explana-

tions gain their explanatory power by the systematic throwing away of vari-

ous causal and physical details of the physical system under study. Moreover,

according to Pincock, abstract explanations proceed by focusing on an ab-

stract structure realized by such a system. The Königsberg bridges example

shows that abstract explanations are not asymptotic explanations. This is

because the kind of asymptotic explanations studied by Batterman involves

mathematical equations that result from taking one or more quantities in

a fundamental mathematical law to a limit (such as 0 or infinity)18, but in

the example of the Königsberg bridges there is no reference to any limiting

17As we have seen in chapter 5, there is a theorem in graph theory which says that a
connected graph is Eulerian if and only if every vertex has an even degree [Wilson, 1996,
p. 32].

18This was the case of the transformation performed through the renormalization group
procedure in Batterman’s example. In that case the renormalization group invokes the
so called thermodynamic limit and the singularity, i.e. the fixed point (in the space
of Hamiltonians) corresponding to the behavior of the system at critical point, is what
emerges in this limiting operation.
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operation in this sense.

To come to my approach, I consider that the ability to reason which is

employed in Pincock’s example of the Königsberg bridges is different from the

ability to reason asymptotically which we have seen in Batterman’s example

of asymptotic explanation. But what about this ability to reason? And what

about the conceptual resources which do permit its application?

In the case of the bridges, the mathematical conceptual resources of graph

theory (vertex of a graph, edge of a graph) permit us a reconceptualization of

some relevant structural relational features of the actual system (the bridge-

system). For instance, bridges are seen as edges, or islands and banks as

vertices. Of course, the mathematical entities coming out from this recon-

ceptualization are elements of a graph. Otherwise, such operation would be

useless19. Now, when this reconceptualization is put in practice, it is possible

to obtain (for instance through a theorem) new knowledge about our graph.

For example, we obtain the property a connected graph with all vertices of

even degree has to be Eulerian. From this new (mathematical) property we

will go back to our actual system (the bridge-system), and this step is made

by identifying some particular entities of the graph (the entities which have

been reconceptualized), together with their relational features, with some ac-

tual aspect of the physical system (together with its relational properties).

This is to say that, at this step, we are using our ability to reason analogically:

we are learning about a new situation, in this case a structural property of

the actual system, by relating it to a more familiar situation, in this case a

property of the graph (surprisingly, the graph is more familiar than the ac-

tual system). Observe, however, that to see the actual system and the graph

as structurally parallel is permitted by the previous reconceptualization, i.e.

the conceptual resources of graph theory allow to apply our ability to reason

analogically. Furthermore, there is another ability to reason which is permit-

19The same holds, I think, when we reconceptualize a pencil as a line belonging to
a plane. This line should be seen as an element of the euclidean plane, and after the
reconceptualization it will be subject to the rules of euclidean geometry. In the same way
the lines and the dots in the case of the Königsberg bridges are seen as edges and vertices
of a graph, and therefore they are subject to the rules of graph theory.
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ted by the reconceptualization and which is used as well in Pincock example.

In their paper “Graph theory representations of engineering systems and

their embedded knowledge” [Shai et al., 1999], Shai and Preiss consider the

usefulness of a mathematical representation which is isomorphic to the el-

ements of an engineering system. In particular they focus on the benefits

which derive from the use of graph theory in representing an engineering

system. The study of graphs provides interesting insights concerning the

knowledge of the engineering systems. This knowledge is called by them

“embedded knowledge”:

The properties of the mathematical elements of those graphs and the

relations between them are then equivalent to knowledge about the en-

gineering system, and are hence termed “embedded knowledge”. The

use of this embedded knowledge is illustrated by several examples: a

structural truss, a gear wheel system, a mass-spring-dashpot system

and a mechanism. Using various graph representations and the theo-

rems and algorithms embedded within them, provides a fruitful source

of representations which can form a basis upon which to extend formal

theories of reformulation. [Shai et al., 1999, p. 273]

Moreover, they remark how the embedded knowledge that results from

the use of a graph-representation is conveyed to the students by the “ability”

to “switch seamlessly from one representation to its analogy”:

Other results of this project have included successful use of these rea-

soning methods in high school classes, where students have assimi-

lated the experience of using several representations to solve, or rea-

son about, an engineering system. In the last decade over 300 high

school students have successfully attained a much better-than-usual

grasp of both mathematics and physics by using a variety of represen-

tations. We postulate that this success is partially owing to the use

of multiple approaches and the ability to switch seamlessly from one

representation to its analogy. [Shai et al., 1999, p. 284]
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It seems then that this ability should be regarded as a distinct ability

to reason which participates, together with the ability to reason analogically,

within Pincock’s abstract explanation of the impossibility of making an Euler

tour across the seven bridges of Königsberg. Once the reconceptualization

is put in place, we can use our ability to reason analogically and our ability

to switch from the graph structure to the actual structure (and the other

way around). It is by using these abilities that we are convinced that it is

impossible to perform such a walk across the bridges, i.e. that the relational

features of the bridge-system do make impossible such a route.

It might be observed that in Pincock’s case I consider that mathematical

conceptual resources can permit a reconceptualization of a physical object as

a mathematical object, while up to now I have considered reconceptualization

of mathematical objects as mathematical objects alone. Reconceptualization

in this sense, from a physical object to a mathematical object via mathemat-

ics, is something which I consider perfectly admissible within my framework.

For instance, I will consider the same sort of reconceptualization in section

8.5, when focusing on the asymmetry problem. Moreover, as I suggest below,

this sort of reconceptualization (to interpret a physical object or an actual

state of affairs as a mathematical entity) might be seen as associated with

the possibility of having a mapping between the actual world and a math-

ematical structure, i.e. reconceptualization in this sense is associated with

representation.

My discussion of Pincock’s example in terms of conceptual resources and

intellectual tools manifests a further aspect of my account. To say that it

is possible to reconceptualize a piece of the world through the mathemat-

ics of graph theory amounts to saying, in Pincock’s structuralist terms, that

it is possible to identify a mapping between the world and some abstract

mathematical model20. This is something which I welcome and which is per-

20To be more precise, I suppose that Pincock would say that it does exist a mapping
from an actual target system to the mathematical structure.
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fectly compatible with my idea of conceptual resources21. Observe, however,

that reconceptualization alone is not sufficient, according to my framework,

for genuine explanation. A genuine MEPP results from the fact that the

conceptual resources make possible a fruitful reconceptualization, i.e. the

conceptual resources must permit to apply a particular ability to reason (in-

tellectual tool). Therefore, according to my framework, representation alone

(associated with the reconceptualization as in the example proposed by Pin-

cock) is not enough for a genuine explanation. Furthermore, conceptual

resources are not always linked to this representational aspect (as the con-

ceptual resource acting in Batterman’s example shows). Finally, behind my

framework lies the idea that representation is neither necessary nor sufficient

for explanation. And this accords with what we have seen in section 5.4,

where from the discussion it emerged that representation is not necessary for

explanation.

8.4.3 Kitcher

Let me pass to consider Kitcher’s example of unification through the New-

tonian pattern. In the previous chapter I showed how Kitcher’s unification

model, in its original form, is not able to account for the MEPP concerning

the behaviour of the Hénon-Heiles system. The weak point of the account

stood in the inadequacy of Kitcher’s argument pattern to capture a par-

ticular inferential step inside its structure. The inferential step in question

concerned the grasping of the particular behaviour of the system obtained

though our ability to reason visually on a diagram.

What I want to suggest in this subsection is that Kitcher’s example of the

Newtonian case can be rewritten in terms of my categories, while preserving

the idea that the Newtonian pattern does provide unification. Furthermore,

21Perhaps a further step in the investigation of the relation between mapping and con-
ceptual resources would be to explore the possibility that conceptual resources do permit
such a mapping, i.e. they permit the passage from the actual situation to the graph. For
my present focus is elsewhere, I will not address this issue and I leave this question to the
structuralist explorer.
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the idea suggested by Kitcher, i.e. that different phenomena which do obey

Newton’s laws can be explained by using the very same pattern, is preserved

in my analysis too.

The Newtonian pattern is used to derive sentences which do represent

different phenomena. In order to use my framework of conceptual resources

and intellectual tools, and preserve the idea that through the Newtonian

pattern we do have genuine MEPP, it must be shown that to the use of this

pattern there corresponds the use of a particular ability to reason through

some conceptual resources.

As we have seen in chapter 3, in the Newtonian pattern 〈s, f, c〉 the set

of filling instructions fN contains the directions for replacing the dummy

letters α, β, γ, δ, θ in every schematic sentence. For instance, consider the

schematic sentence “The force on α is β”. As stated by the two filling instruc-

tions contained in fN , the letters α and β are to be replaced, respectively, by

an expression referring to the body under investigation and by an algebraic

expression referring to a function of the variable coordinates and of time. The

same operation of replacement can be made with the dummy letters which

appear in the remaining schematic sentences. Furthermore, the classification

set cN for the schematic argument sN gives us the inferential information

about the schematic argument (how we move, in the schematic argument,

from the premises to the conclusion). Finally, this inferential schema is used

to derive sentences which represent different phenomena. This derivation,

once made according to the classification set cN , has the form of a simple

derivation performed in first order logic22. Here is a simplified schema of the

derivation:

(1) P1

(2) P2

(3) P3

22The classification set indicates that: P1, P1 and P3 are premises; that P4 is obtained
by P1-P3 by substituting identicals; that P5 is deduced from P4
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(4) P4 (from P1-P3 by substituting identicals)

(5) C (from P4)

The conceptual resources of Newtonian mechanics (force, acceleration,

trajectory, ...) permit us to describe some actual state of affairs as config-

urations of magnitudes which are related among them through differential

equations. Next, the resources of first order logic (with schematic letters)

permit to fit these informations (the relations among the various differential

equations) into an inferential schema23. On this schema the scientist reasons

deductively, in terms of a first order predicate language and in terms of the

non-logical instructions given by the classification set. In fact, the deduction

of C is not purely logical. For instance, C follows from P4 by using algebraic

manipulations and the techniques of the calculus (as stated by one member of

the classification set), but this information does not appear in the inferential

schema above (the schematic argument). As Kitcher points out:

Whereas logicians are concerned to display all the schematic premises

which are employed and to specify exactly which rules of inference

are used, our example allows for the use of premises (mathematical

assumptions) which do not occur as terms of the schematic argument

and it does not give a complete description of the way in which the

route from (4) to (5) is to go. Moreover, our pattern does not replace

all nonlogical expressions by dummy letters. Because some nonlogi-

cal expressions remain, the pattern imposes special demands on ar-

guments which instantiate it. In a different way, restrictions are set

by the instructions for replacing dummy letters. [Kitcher, 1981, p.

517-518]

Finally, through the pattern the scientist is able to derive a large num-

ber of accepted statements (accepted by the scientific community to which

23As Kitcher observed, the tools of logics are used to isolate the notion of pattern and
costruct this inferential schema: “the logician’s approach can help us to isolate the notion
of argument pattern which we require” [Kitcher, 1981, p. 516].
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the scientist doing the explanation does belong). For instance, two state-

ments concerning the behaviour of two physical phenomena are derived from

arguments that instantiate the common argument pattern. This is how phe-

nomena which do obey Newton’s laws can be explained by using the very

same pattern.

Now, let me switch to my approach to explanation. Differently from

Kitcher, I would propose the following reading of what it means to explain

a phenomenon through the Newtonian pattern: to explain a phenomenon

through a Newtonian pattern is to be able to reason deductively in terms of

this pattern. Let me elucidate this intuition with an example. Suppose that

we want to explain why a projectile fired horizontally covers a certain dis-

tance x after a certain time t (for some initial conditions). The statement ‘the

projectile fired horizontally covers a certain distance x after a certain time

t’ belongs to the set of our accepted beliefs, i.e. it belongs to what Kitcher

called the set of accepted sentences K. In order to explain why the projectile

fired horizontally covers a certain distance x after a certain time t, the first

step is to use the conceptual resources coming from the Newtonian theory

(concepts of force, acceleration, trajectory) to describe the actual state of

affairs as configurations of magnitudes which are related through differen-

tial equations. Once this conceptualization is made, we use the Newtonian

pattern as to derive the statement ‘the projectile fired horizontally covers a

certain distance x after a certain time t’. The crucial point is that the use of

the Newtonian pattern presupposes the ability to reason in terms of this pat-

tern, i.e. the ability to follow the schematic argument by taking into account

the sets of filling instructions and the classification set, plus the particular

initial conditions. To rephrase this in terms of my approach: to explain that

‘the projectile fired horizontally covers a certain distance x after a certain

time t’ we use the ability to reason (deductively) in terms of the Newtonian

pattern. The use of this ability is permitted by the conceptual resources of

Newtonian mechanics (something which sounds very natural!). Of course,

when we are confronted with a different phenomenon, there is also the possi-
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bility that these conceptual resources do not permit such a conceptualization

and the application of this ability. For instance, in the case of a chemical reac-

tion, if we want to explain why we obtain the product C from two particular

reagents A and B, the Newtonian conceptual resources will not permit any

fruitfull conceptualization (and therefore we will not able to use the ability

to reason in terms of the Newtonian pattern). On the other hand, although

this particular ability to reason is used for a class of phenomena which can

be studied and conceptualized through the Newtonian theory, it is possible

that a physical phenomenon be explained by using the ability to reason in

terms of a different pattern having the structure of the Newtonian pattern.

This can happen, for instance, when some theoretical concepts of a theory

do permit a conceptualization and on this conceptualization it is possible to

reason deductively in terms of a certain pattern (similar in structure to the

Newtonian pattern but with different sets s ,f , c)24.

Therefore, some conceptual resources coming from Newtonian theory per-

mits to apply the ability to reason in term of the Newtonian pattern. Is this

circular in some sense? I think it is not. The general idea which stands

behind the previous lines is that the Newtonian pattern is a tool that we ac-

quire. This instrument indicates a particular scheme of inference, and to use

this instrument amounts to being able to reason accordingly to the deductive

schema which is stated by it25. Of course, this pattern is found before we use

it to explain a phenomenon. And the ability to reason in terms of this pattern

is something that we learn in our scientific education and practice. However,

the ability to reason in term of this pattern must be keep separated from the

conceptualization which is permitted by the Newtonian concepts. We might

be able to find some conceptualization of an actual state of affairs by means

of Newtonian concepts, but we might not be able to reason in terms of the

Newtonian pattern. This is what happen, I think, in the following situation:

24For instance, Kitcher shows how such a pattern can be found in the Darwinian theory
of evolution [Kitcher, 1981].

25Let me add that to be able to reason deductively in terms of the pattern requires the
ability to reason schematically in terms of a predicate language.
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a student is asked to explain some phenomenon; he conceptualizes the situa-

tion by using the Newtonian concepts; he is not able to reason deductively in

terms of the pattern and then he is not able to see how the explanandum is

derived according to the pattern. In this case, he will not be able to explain

the phenomenon.

Observe that, in Kitcher’s example, conceptual resources do not have the

function of permitting a reconceptualization from A to B, namely the re-

description of A as B where A and B are known states of affairs. Every time

that we use such Newtonian conceptual resources we conceive ex novo an ac-

tual state of affairs as configurations of magnitudes which are related among

themselves through differential equations. This is different from the case of

the Hénon Heiles system. In that case the conceptual resource Poincaré map

did permit the passage from A to B, where A and B were known before

the reconceptualization, but here the conceptual resources of Newtonian me-

chanics permit a “conceptualization” (they permit us to conceive B ex novo).

This is why I used the term ‘conceptualization’ instead of ‘reconceptualiza-

tion’. Therefore, together with reconceptualization, here is a second function

of conceptual resources: they permit the conceptualization of a particular

state of affairs. This conceptualization must allow us to apply an ability to

reason, which in this case is our ability to reason in terms of the Newtonian

pattern.

Finally observe that, although my approach does not consider that it is the

unification function of the Newtonian pattern which confers an explanatory

character to the deduction, the idea that the pattern does provide unification

(in Kitcher’s sense) is left untouched. On the other hand, according to my

approach, the unification function of the pattern is related to explanation

only in the following sense: the pattern ‘defines’ (broadly speaking) an abil-

ity to reason, and to the use of this ability to reason there corresponds a

particular form of explanation which is exploited for a class of phenomena

(the Newtonian phenomena).
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8.4.4 Steiner

Let’s come back to the existence of an instantaneous axis of rotation in

the kinematics of rigid body motion. This result, as obtained through a

particular theorem (and the relative proof), has been taken by Mark Steiner

as an example of genuine MEPP26.

As we have seen in our discussion of Steiner’s model, the mathematical

theorem that states the existence of such an instantaneous axis is called

“Euler’s theorem”. In order to see how the example taken by Steiner can

be described in terms of my categories, it is useful to come back to Euler’s

original formulation of the theorem.

Euler gave a geometrical proof of the existence of the instantaneous axis,

for the first time, in his E177 [Euler, 1750]27. In E177, after a geometrical-

analytical argument, Euler adds a purely geometrical proof of the existence

of the instantaneous axis of rotation, discussing the infinitesimal motion of

a spherical surface with a fixed point. This proof, which is given in the

framework of Euclidean geometry and which persuades Euler of the existence

of the instantaneous axis of rotation, is performed by reasoning visually on

a diagram28. As Euler affirms:

Sans entrer dans le détail du calcul, que je viens de déveloper, on peut

aussi prouver la même vérité par la seule Géométrie. Qu’on considère

dans le corps une couche sphérique, dont le centre soit dans le centre

du gravité du corps, car il est évident, qu’ayant connu le mouvement

de cette superficie sphérique, le mouvement du corps tout entier sera

déterminé. [Euler, 1750, p. 96]

Euler considers the geometrical proof as an explanation of the physical

phenomenon (take in mind the explanandum: the fact that for every rotation

of a rigid body with a fixed point there exists an instantaneous axis around

26See section 1.3 for a presentation of the theorem’s proof and Steiner’s account.
27In 1910 and 1913, the swedish mathematician Gustav Eneström completed the first

comprehensive survey of Euler’s works. Each work is classified by using the letter E and
a number (the works are referred to as “Eneström number”).

28For a reconstruction of Euler’s geometrical proof see [Koetsier, 2007, p. 184-185].
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which the rotation is made), and he explicitly affirms that such an expla-

nation is given without recurring to exact calculations (“Sans entrer dans le

détail du calcul, que je viens de déveloper, on peut aussi prouver la même

vérité par la seule Géométrie”)29. The instantaneous axis exists because we

can easily construct it geometrically. In such a construction Euler makes

use of the ability to reason visually on a diagram. The conceptual resources

which permit Euler to apply such an ability come from the Euclidean geo-

metrical framework (for instance, the concept of euclidean distance makes

possible to reconceptualize a fixed distance between two points of the actual

body).

Now, Euler’s geometrical argument is perfectly valid from a formal point

of view30. However, in modern textbooks of classical mechanics the explana-

tion of why there exists such an axis is given by recurring to the formalism of

linear algebra and group theory31. The interesting observation for us is that

scientists regard the modern proof as genuinely explanatory [Goldstein, 1957,

p. 156]. This is what happens in Steiner’s case, where the theorem is proved

by using the tools of linear algebra. It would be interesting, then, to inves-

tigate the transition from Euler’s formulation to the modern one in terms

of linear algebra. This sort of investigation might reveal that there is some

common feature which is supposed to preserve the ‘explanatoriness’ of the

old formulation in the modern formulation as well. Another option would

be that, in this transition, standards of explanations have changed. Thus

the modern formulation in terms of linear algebra would be regarded as ex-

planatory in our context, but it would not possess any explanatory virtue

which is shared with the original formulation. In this subsection, I suggest

the idea that the effect of this transition has been to generate a new ability

29Note that in considering Euler’s geometrical proof as a genuine explanation I am not
endorsing any particular account of mathematical explanation in physics, such as Steiner’s.
The fact that this is an explanation of the phenomenon is recognized by Euler himself.

30The possibility of proving Euler’s theorem via a geometrical procedure is not lost, i.e.
euclidean geometry still works (why should it not?). For instance, although different from
Euler’s, a purely geometrical proof of the theorem is given by Whittaker [Whittaker, 1904,
p. 2] and Targ [Targ, 1987, p. 221].

31I have presented the theorem and the relative proof in section 1.3.
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to reason which is now employed as intellectual tool in the example analyzed

by Steiner. This ability to reason embeds our ability to reason visually, but

should be considered as a different ability to reason. Its use in MEPP is

made possible by conceptual resources. However, these conceptual resources

are different from those which permitted Euler to use his ability to reason

visually.

As a consequence of a historical process, concepts like determinant, ma-

trix, linear systems, orthogonality or point-to-point transformation are today

included in the mathematical apparatus of linear algebra and we can profit

from their interplay without exiting from this framework. Those concepts are

linked together in the solid framework of linear algebra and such a linkage

provides, potentially, conceptual resources which were not available before.

The interplay of concepts in this network of concepts is so complex that it

does not permit any easy separate analysis of the mathematical elements

which are found in the proof structure of a theorem such as Euler’s. This

difficulty is well remarked by Israel Kleiner in his History of Linear Algebra:

Among the elementary concepts of linear algebra are linear equations,

matrices, determinants, linear transformations, linear independence,

dimension, bilinear forms, quadratic forms, and vector spaces. Since

these concepts are closely interconnected, several usually appear in

a given context (e.g. linear equations and matrices) and it is often

impossible to disengage them [Kleiner, 2007, p. 79]

To come to our case, in the shift of the formulation various different

geometrical and analytical concepts have been included in the framework of

linear algebra. What is more important, in the modern proof, the geometrical

part comes as already ‘included’ in the algebraic formalism and we do not

need a purely geometrical argument to state the result (the existence of the

axis). It is interesting to report here what Peano himself, in his Analisi della

Teoria dei Vettori [Peano, 1898], observed:

Thus the theory of vectors appears to be developed without presup-

posing any previous geometrical study. And since, by means of this
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theory, all of geometry can be treated, there results thereby the theo-

retical possibility of substituting the theory of vectors for elementary

geometry itself [Peano, 1898, p. 513]

Thus vector space theory substitutes geometry, and embeds geometrical

concepts within its structure. Consequently, since vector theory is a subfield

of linear algebra, linear algebra will embed geometrical concepts. Euler could

not profit from this ‘substitution’ and his proof structure had to turn to a

purely geometrical system of concepts.

In the case of the modern proof we prove the result (eigenvalue +1 with

eigenspace of dimension 1) by using concepts and results which belong to lin-

ear algebra32. Observe, moreover, that the eigenvector corresponding to the

eigenvalue +1 is associated to a vector in a 3-dimensional vector space. This

step is essential in the reasoning because we are convinced that the (actual)

axis exists only if we assume that it denotes such a vector. In this case, the

association of a particular vector with an actual object (the axis), makes it

possible to have a visual picture of the situation (the eigenvector associated

to an eigenvalue is visualized as a vector in a 3-dimensional vector space33).

However, this kind of visualization seems to be somewhat different from that

which appears in Euler’s original geometrical proof. Where in Euler’s case

the visualization was performed on a diagram, here we have a sort of mental

picture of the situation. The ability to reason which is employed is different

from the ability to reason visually. Plausibly, the ability which operates when

we ‘see’ the instantaneous axis of rotation behind an eigenvector embeds our

ability to reason visually, but it employs an abstract ingredient as well. We

have a mental image of the situation, and we do not necessitate to reason on

a diagram (although such a diagram can be constructed). For simplicity, let

32Keep in mind that the proof I am referring to is that which follows Goldstein’s book
[Goldstein, 1957]. I reported the proof in section 1.3.

33Here I am not claiming that the geometrical interpretation of eigenvectors is intrinsic
in their definition. I am assuming that under a particular ‘reading’ (in our case Euler’s
theorem in kinematics of rigid body motion), a subset of vectors of the vector space
considered (the subset containing the instantaneous axis) has a geometrical representation
in a diagram at time t. This representation can be obtained, for instance, by a computer
graphic simulation.
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me call ‘ability to reason abstractly’ this particular ability to reason34.

According to my framework, in a genuine MEPP the use of this abil-

ity to reason is permitted by some conceptual resources. These conceptual

resources are provided by linear algebra. Moreover, they embed some geo-

metrical concepts which were present in Euler’s geometrical proof. This is

why, although different, these conceptual resources permit a reconceptual-

ization which is very similar to that permitted by the conceptual resources

used by Euler. For instance, in the modern algebraic proof the condition

of invariance of distances is not mentioned because it is already included in

the invariance of the euclidean scalar product which is defined in the eu-

clidean 3-dimensional space35. The modern formulation includes the concept

of topological space (an euclidean 3-dimensional space is a topological space)

and as a consequence we do not need to work (for the particular case of our

proof) with distances between points. What is important for a topological

space is the ‘form’ of the space, its topological properties, which are given by

the metrics induced by the norm (the norm defined in our vector space). To

underline the shift from Euler’s concept of distance (euclidean distance) to

the modern one based on the norm is important because it allows us to look

at the change in the structure of the explanation through the lens of concep-

tual resources. Euclidean distances are already included in the mathematical

concept of norm, which stands as a new conceptual resource available in the

framework of linear algebra. This conceptual resource, as that given by the

concept of vector, permits a reconceptualization of the actual situation and

makes it possible to use our ability to reason abstractly.

To observe that it is possible to reason qualitatively through an ability to

reason (to have a mental picture of the axis) does not mean that the math-

ematical formulation does not include any (quantitative) calculatory step,

or that such calculations have no role in MEPP. Of course, calculations are

necessary in the process of explaining a scientific phenomenon. For instance,

34The ability to reason abstractly considere here should not be confused with abstract
explanation, which is the particular kind of explanation considered by Pincock.

35Recall that orthogonal transformations preserve scalar product.
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in this case algebraic calculations are necessary to state the existence of an

eigenvalue +1 (which corresponds to an eigenvector). However, in my view,

these calculatory steps are not sufficient to have a genuine explanation and

they do not carry any explanatory power. A genuine explanation results from

the use, at some step in the calculations, of one or more abilities to reason. It

is the use of these abilities to reason that must be considered as an essential

ingredient in a genuine MEPP.

To sum up, in the example given by Steiner there is a particular ability to

reason which acts, our ability to reason abstractly, and the use of this abil-

ity to reason is permitted by some conceptual resources (by the concept of

vector and by the concepts provided by the framework of linear algebra, for

instance the concept of norm). Our ability to reason abstractly embeds our

ability to reason visually, but the latter is different from the former. There

is probably much more to say on the development of this ability, which is

used as a natural instrument in linear algebra (for instance, when we sum

two vectors we can have a mental image of the algebraic operation we are

performing). And it is reasonable to think that the progressive embedding

of geometrical concepts into the abstract concepts of linear algebra, passing

through the theory of vector spaces, has contributed to the development of

this ability and its acceptance as a natural tool in our mathematical prac-

tice.

Finally, it should be noted that seeing the existence of a physical phe-

nomena behind the modern proof (i.e. when we consider an eigenvector we

have a mental picture of an instantaneous axis of rotation) it is possible only

via an assumed isomorphism between physical space and the euclidean 3-

dimensional space (the vector space) we are working with. The isomorphism

in question is, to use Steiner’s words, a necessary ‘bridge principle’ in order

to analyse the physical system in terms of vectors. Also in the case of Euler,

where the physical space is considered isomorphic to the geometrical space,

there is a bridge principle which implictly operates. However, as stressed by

Lyon and Colyvan [Lyon et al., 2008, p. 16], the fact that some necessary
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bridge principle should be adopted in MEPP does not reduce the importance

of the mathematical part of the explanation in question (the bridge principle

is itself a piece of mathematics, because it is defined in terms of isomorphism).

As I suggested in Pincock’s case discussed above, the mapping is correlated

to some extent to the conceptual resources which act in the MEPP.

8.4.5 Generalization: strategy

In the previous four subsections I suggested that the examples of MEPP

seen throughout this thesis, and proposed by the different authors analyzed

in parts I and II, can be rewritten according to my categories of conceptual

resources and intelectual tools. This would preserve the intuition that these

cases are genuine cases of MEPP.

The interesting point is that the use of one or more intellectual tools might

correspond to a particular species of explanation, and this idea is perfectly

in line with the pluralist hypothesis. In Batterman’s example, the ability to

reason asymptotically is what characterizes asymptotic explanations, while in

Pincock’s example I have suggested that two abilities to reason are employed

(the ability to reason analogically and the ability to switch from the graph

to the actual system). For Kitcher’s example and Steiner’s I put forward the

idea that in those cases two other abilities to reason are used as well, the

ability to reason in terms of the Newtonian pattern and the ability to reason

abstractly. Table 8.1 provides a summary of the abilities to reason employed

in every explanation. Again, this kind of investigation would require a more

comprehensive analysis. I have only offered a very general intuition about

how such an analysis, if performed, would confirm the applicability of my

framework.

What then about a possible generalization of my schema? A potential

way to generalize it would consist in identifying the abilities to reason which

are used in scientific practice in a particular scientific context (a task which

might be well delegated to cognitive science), and then consider how such

abilities are used through mathematical concepts in the practice of explain-
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Example discussed by Intellectual tool(s)
Universality of critical phe-
nomena

Batterman ability to reason asymptoti-
cally

Königsberg bridges Pincock ability to reason analogi-
cally, ability to switch from
the analog to the actual sys-
tem

Newtonian phenomena Kitcher ability to reason in terms of
the Newtonian pattern

Existence of an instanta-
neous axis of rotation

Steiner ability to reason abstractly

Table 8.1: Intellectual tools used in the respective examples.

ing. This would result in the identification of a variety of explanations, where

each explanation makes use of one or more particular abilities to reason36.

If my intuition is correct, the use of these abilities to reason is permitted by

one or more conceptual resource. As natural, this procedure might result to

be interesting for the study of new species of MEPP (explanations which use

abilities to reason different from these considered here), but it might even

reveal the fallacy of my approach.

8.5 Payoff, directions of analysis

In this section I will suggest how my framework is supposed to provide

insights into two distinct topics which appear in the contemporary philosoph-

ical debate on explanation.

First of all, I will reconsider the classical asymmetry problem of explana-

tion (presented in section 2.2 and discussed in relation with the accounts in

various sections of part I). This problem is not discussed in the contemporary

36As I remarked in section 8.2, and as we have seen in my discussion of Pincock’s
example in subsection 8.4.3, I do not exclude that two or more intellectual tools might be
used together and then combined in an explanation. For instance, the ability to reason
visually and that to reason asymptotically might both be used in an explanation of a
physical phenomenon, and this would result in a species of explanation different from that
involving only one of such abilities.
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philosophical literature in relation to MEPP, and this is because of the inter-

vention of causal claims in what is regarded as the correct strategy to solve

it. I will show how my framework can provide a possible way to account for

what is generally seen as a solution to the asymmetry problem, and do this

without losing the reference to the causality claims. In other words, I will

show that what is considered as the right solution to the asymmetry problem

can be written in terms of my categories. This will suggest the idea that

my approach is not limited to MEPP but can be extended to cover scientific

explanation as well.

Secondly, I will show how my framework, if adopted, would have a thought-

provoking repercussion for the ontological debate between platonists and

nominalist in the philosophy of mathematics. In particular, it might pro-

vide a useful lever on realist’s claims about the existence of mathematical

objects as they appear in the Enhanced Indispensability Argument (EIA).

Even if I will not report a comprehensive analysis here, I think that the

lines which follow contain sufficient detail to show that the framework I pro-

pose can provide new directions of investigation.

8.5.1 Asymmetry problem revisited

For the sake of clarity, let me shortly reconsider the asymmetry prob-

lem of scientific explanation. The problem of asymmetry arises when we

have pairs of deductively valid arguments which rely on the same law(s) and

which differ radically in explanatory potential. The classical example is that

of the flagpole and the shadow, which has been paraphrased by Van Fraassen

by using the example of the tower and the shadow37. If we consider a flag-

pole and its shadow, by using the laws of optics together with the laws of

trigonometry and some physical assumptions we can explain why the shadow

has that particular length by considering the length of the flagpole. Now,

while the same kind of deduction is perfectly legitimate via the same laws

37See subsection 2.3.3 for Van Fraassen’s example and his story of the tower and the
shadow.
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the other way around (deduce the length of the flagpole from that of the

shadow), it seems nonsense to say that the length of the shadow explains the

height of the flagpole. Observe that trigonometry laws alone do not permit

the choose that one direction is preferable, and therefore these laws do not

act as discriminant in the choice of the preferred explanation. Thus, in order

to solve the problem of asymmetry, namely, in order to pick out what is gen-

erally considered as the genuine explanatory direction, we need something

more.

Recall now Wittgenstein’s motto: bring you commonsense with you and

don’t leave it outside, when you enter the room to philosophize. In this

case, it is reasonable to consider that a specific ability, our ability to reason

causally, has a discriminant role in the choice of the ‘good direction’ of the

explanation (that in which we explain the length of the shadow through the

length of the flagpole by using geometrical considerations and physical as-

sumptions). If this intuition is right, the difference in explanatory potential

in the asymmetry problem is due to the fact that one direction of the expla-

nation gets the asymmetric causal order right (the length of the shadow is

causally conditioned by the height of the flagpole), while the other does not.

Intuitively, we know that the shadow is “caused” by the flagpole because we

assume that light rays travel in straight paths and the dark area (the shadow)

appears when there is an object (the flagpole) between a source of rays (the

sun) and a surface (the ground). This information is in our background

knowledge under the form of physical concepts, which are not timeless but

are context-dependent and could vary over time38. For simplicity, let’s call

(α) and (β) the two situations:

(α) the length of the shadow is explained through the height of the flagpole

38Try to think, for instance, to a solution of the asymmetry problem in a world à la
Lewis Carroll in which shadows do cause flagpoles by means of some strange mechanism.
In this case, if we assume that the Pythagorean theorem is right and trigonometry laws
have not changed, we will accept as good explanation that which uses the shadow’s length
to explain the flagpole height. This exactly because Carroll’s world, as scientists have
discovered during their investigations, affects our commonsense in that precise way (call
the relation between shadows and flagpoles in that strange world ‘acausation’).
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...

Abilities to reason
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A (ability to reason causally)

B C
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Conceptual 
Resources

Figure 8.4: My framework for the case of the asymmetry problem of expla-
nation. Our ability to reason causally is an intellectual tool, used through
conceptual resources.

(β) the height of the flagpole is explained through the length of the shadow

To anticipate my point, what I want to show is that we can solve the

asymmetry problem because in (α) we dispose (with respect to the expla-

nation the other way around) of some extra utility which comes into play

and permits us to discriminate between the two putative explanations. This

extra utility is our ability to reason causally, i.e. our ability to recognize that

there is a functional dependency between two or more determining elements.

Our ability to reason causally corresponds, in my view, to an intellectual

tool which is used in the explanation and which contributes to the accep-

tance of one particular direction of the deduction as explanatory. However,

to say that we dispose of such an intellectual tool is not enough. According

to my framework, the use of this tool is possible because we dispose of some

conceptual resources which permit a reconceptualization and the application

of our ability to reason causally (as shown in Figure 8.4). In the following
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Figure 8.5: The situation reconceptualized through euclidean geometry.

paragraph I provide a justification for this claim.

In this case geometrical concepts (distance, angle, etc...) permit us to

reconceptualize the physical objects ‘flagpole’ and ‘shadow’. Through the

lens of euclidean geometry we see the flagpole and the shadow as segments

on a plane (the two-dimensional surface S of Figure 8.5). Morever, from the

theory of light we assume that light rays travel in straight paths, and then

the same euclidean concepts permit us to also see the path of one light ray

coming from the sun as a segment of the same plane (more precisely, we focus

on a part of that segment, i.e. that going from the flagpole to the ground).

We have, finally, three segments which can be seen as sides of a triangle.

To reconceptualize the problem as such allows us to make derivations about

the length of the shadow from the length of the flagpole, but also the other

way around (through trigonometrical laws). However, observe that even if

the reconceptualization permits deductions in both senses, we dispose of an

extra ingredient which can be added to our story. We know from our expe-

rience that to an occurrence of an event at point A on the flagpole (A is the

edge of the flagpole/segment) there corresponds another event at point B on

the ground. The event in A, i.e. the interaction of the light ray with the
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flagpole and its blocking, is distinct from the event in B, i.e. the emergence of

a shadow (or shadow-point). Moreover, our (accepted) physical theory says

that the event at B is a consequence of the event at A (event at B is posterior

to A and it depends on the occurrence of A). The same holds for all the other

points A1 ...An and B1 ...Bn , belonging, respectively, to the flagpole-segment

and the shadow-segment. In other words, we know that the shadow-segment

is the sum of each causally connected event AB,A1B1, ... , AnBn. By reason-

ing in this way, we are using an ability to reason, and precisely our ability to

reason causally. This ability can be used, in this particular situation, because

some conceptual resources (coming from euclidean geometry) make possible

a reconceptualization and the application of our particular ability. Therefore

our ability to reason causally is an intellectual tool. It injects an extra ingre-

dient into our purely deductive considerations. This ingredient provides us

with a sort of natural ‘persuasion’ and permits us to pick out one direction as

genuinely explanatory. In situation (β) the very same reconceptualization is

not sufficient to provide the same sense of explanatoriness, and this is exactly

because our ability to reason causally suggests the other direction as natural.

My discussion above provides, I think, a possible way to account for a

correct solution to the asymmetry problem without recurring to any specific

model of explanation. We can discriminate the genuine explanation, but we

do not endorse any specific account of MEPP in performing such an evalua-

tion39. However, and this would agree with my idea that the different species

39Remember that, as we have seen in section 2.3.3, Van Fraassen gave the same status
of genuine explanation to both the directions in the asymmetry problem. For him the
explanation (the answer to the question “Why is the shadow so long?”) given by the
Chevalier, and based on laws of trigonometry and the straight path of light rays, was
exactly on a par with the explanation (the answer to the question “Why is the tower so
high?”) given by the housemaid and based on the love-story between the Chevalier and
the maid. Van Fraassen claimed that context makes appropriate to explain the tower’s
height in terms of the length of the shadow it casts, and the resulting explanation is a
genuine explanation. What then about his approach to the asymmetry problem and my
perspective? I think that in the case proposed by Van Fraassen the explanation given by
the housemaid and based on the love-story between the Chevalier and the maid must be
excluded as genuine. This is because, in my view, conceptual resources must be scientific
concepts used in scientific practice, and the direction of the explanation making use of the
love-story between the Chevalier and the maid does not make use of scientific concepts.
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of explanation can be discriminate by making reference to the intellectual

tool which employ, the use of our ability to reason causally as an intellectual

tool denotes a particular form of explanation (causal explanation).

Observe that the observation that causation constitues an extra require-

ment to be added when we are faced with particular scientific explanation is

something which is not new and which has been stressed by various authors.

For instance, the ‘unificationist’ Schurz points out that:

it seems to follow that in the area of explanations of singular events,

we have to add the causality requirement as an extra requirement,

which goes beyond the idea of unification in a merely inferential (or

information-theoretic) sense [Schurz, 1999, p. 100]

In my argument above I did not necessarily have to endorse some account

of causality and causal relation (such as Salmon’s [Salmon, 1984a], Dowe’s

[Dowe, 2008] or Woodward’s [Woodward, 2003]). The fact that the flagpole

causes the shadow perfectly accords with the conceptual schemes developed,

used, and tested in scientific practice, no matter what causality means. This

‘practice-driven’ attitude towards causality does not undermine the useful

role that our ability to reason causally has in science, neither does it make

the philosophical analysis of it meaningless40. To attribute to causality such

an heuristic value, without defining a sense of causal relation or adopting a

theory of causality (and then without offering a potential solution to Hume’s

On the other hand, the explanation in terms of trigonometrical and physical considerations
makes use of scientific concepts and permits a fruitful reconceptualization. As I proposed
above, these concepts do permit to apply an ability to reason. This marks an essential
difference between my approach to explanation and Van Fraassen’s. More generally, I think
that the task to provide some explanation in science is a quite different affair from that of
providing other sorts of explanation in our everyday life. For instance, it would be very
hard to imagine a physicist who, when asked for a genuine explanation of some natural
phenomenon, points to a love story as an essential ingredient of why that phenomenon
occurs.

40The term “practice-driven” was used in opposition to “methaphysically-driven” ac-
counts of causality during the Barcelona Conference on Causality and Explanation in
Physics, Biology and Economics (Barcelona, February 2010) [Sus et al., 2010]. In particu-
lar, a practice-account of causation involves no metaphysics and does not provide answers
to what causation is.
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problem), is an attitute which is shared by a contemporary trend in phi-

losophy of science. For instance, in his paper “Causation as Folk Science”

[Norton, 2007], John Norton endorses this anti-“causal-fundamentalist” atti-

tude41.

Let me spend some additional words on the ability to reason causally.

Note that I am not claiming that our ability to reason causally is a primitive

cognitive faculty. We do not possess this ability. On the other hand, I think

that it is reasonably to say that we do possess the faculty to cognitively dis-

criminate events. For instance, we can discriminate the event ‘emission of

light from the sun’ from the event ‘appearance of the flagpole’s shadow’, and

the latter from the event ‘blocking of the light rays by the flagpole’. The same

happens when we observe two balls moving on a billiard table and hitting

the rail in two distinct points. In that case we are able to say that the event

‘collision of the first ball with the rail’ is distinct from the event ‘collision of

the second ball with the rail’. Call event discrimination the cognitive faculty

which permits to discriminate between these events. Event discrimination,

therefore, can be reasonably thought as a primitive cognitive faculty. Al-

though necessary to reason causally, however, this faculty is not sufficient to

it. Event discrimination permits to recognize separate events, but it does not

permit to individuate a causal connection (if there is any!) between them.

Unfortunately, I do not have very much to say on the relations between event

discrimination and our ability to reason causally. For my focus here is on

the latter, and my claim is that such ability is acquired and is not a cog-

nitively primitive faculty, perhaps the best way to clarify my intuition is to

consider that our ability to reason causally results from the use of our faculty

41Where causal-fundamentalism is defined as the doctrine according to which “Nature
is governed by cause and effect; and the burden of individual sciences is to find the par-
ticular expressions of the general notion in the realm of their specialized subject matter”
[Norton, 2007, p. 13]. Recall how Bertrand Russell claimed against a concept of causal law
defined in terms of relation betwen events and, even in a stronger way, against “universal
determinism” (i.e. the idea that every event has a cause). Here is the famous quote: “The
law of causality, I believe, like much that passes muster among philosophers, is a relic of
a bygone age, surviving like the monarchy, only because it is erroneously supposed to do
no harm” [Russell, 1913, p. 1].
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of event discrimination together with the use of our scientific theories and

empirical considerations. Roughly, the use of event discrimination and that

of our best science provides us with an ability to reason which is now seen

as natural in a specific context and which can be used in scientific pratice.

This is what happens, for instance, when we say that the flagpole ‘causes’

the shadow. There are two separate events, for instance in A and B, and we

have a scientific theory which suggests that a causal linkage exists between

these events. Our ability to reason causally comes then from empirical con-

siderations, from a scientific theory plus event discrimination as an essential

ingredient. Again, the use of this ability does not require some account of

causality or causal relation. Causality has an heuristic value, and to reason

causally in a particular situation (as in the asymmetry problem) does not

require a knowledge of how the causal connections are supposed to operate.

Paul Klee once said: “do not reproduce; but make visible”. In the context of

the asymmetry problem, I would say: do not reproduce the causal relation

(if there is any), but make visible how that relation is used.

Finally, observe that in the asymmetry problem I considered that con-

ceptual resources do permit a reconceptualization of a physical object as a

mathematical object, thus allowing us to apply our ability to reason causally.

In doing that, I implicitly expressed the idea that my framework can be ap-

plied to causal explanations as well. Unfortunately, given the topic of this

dissertation, it is not feasible to reinforce this intuition by providing an anal-

ysis of other cases of causal explanation in terms of my framework.

8.5.2 My approach and the Enhanced Indispensability

Argument

In section 2.1 and subsection 5.2.1 we have seen as some philosophers

committed to the existential attitude (notably Mark Colyvan [Colyvan, 2002]

and Alan Baker [Baker, 2005]) attempt to show the existence of mathemat-

ical objects by the so-called “Enhanced Indispensability Argument”. Those

philosophers refer to the indispensable explanatory power of mathematics in
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scientific theories as an instrument to support the claim that some math-

ematical objects exist42. More precisely, they use the following deductive

schema to infer the existence of mathematical objects:

Enhanced Indispensability Argument (EIA)

(1) We ought rationally to believe in the existence of any entity that plays

an indispensable explanatory role in our best scientific theories.

(2) Mathematical objects play an indispensable explanatory role in science.

(3) Hence, we ought rationally to believe in the existence of mathematical

objects.

However, this argument is extremely controversial and various criticisms

have been leveled against it. Some authors have pointed out that the ex-

planatory power of mathematics cannot be used in such existential infer-

ence and the explanatory utility of a mathematical model does not de-

pend upon the actual existence of the mathematical objects posited by the

model ([Leng, 2005], [Bangu, 2008])43. Furthermore, it has been observed

that mathematics does not play any explanatory role in science, but only

a representational one [Saatsi, 2011]. Very generally, the strategy adopted

by the nominalists and by the opponents of the EIA in order to reject the

realist’s ontological claim is to focus on premise (2) and consider that it is

not true. Additionally, it should be noted that the expression ‘indispens-

able explanatory role’ in the EIA is used without the necessary clarifications

42See [Baker, 2009] and [Saatsi, 2011] for a survey of the debate concerning the enhanced
indispensability argument. Baker considers this argument as an improved (‘enhanced’)
version of the Quine-Putnam indispensability argument, whose first explicit formulation
appears in [Putnam, 1971, p. 65]. The improvement is given by the fact that the enhanced
argument refers to the explanatory role of mathematics in science, while in the Quine-
Putnam indispensability argument there is no such reference and the argument focuses on
indispensability simpliciter. The enhanced argument appeals to the role of inference to the
best explanation (IBE) in the defense of scientific realism. See [Colyvan, 2001] and chapter
6 of [Panza et al., 2010] for a survey of the Quine-Putnam indispensability argument.

43For instance, Mary Leng has rejected the argument on the grounds that mathemat-
ical explanations need not have true explanans, and thus the objects posited by such
explanations do not necessarily exist [Leng, 2005].

404



[Panza et al., 2010]. What does it mean for a mathematical object to play an

‘explanatory role’ in science? Further clarifications on the use of the notion

of explanatoriness (of mathematics or mathematical objects in science) are

required, and the same holds for the notion of ‘indispensability’ (of a math-

ematical object playing an explanatory role). There is no general consensus

on how these notions are used in the EIA. What is indispensable in the EIA?

The explanatory role played by some mathematical objects, or the explana-

tory role played by mathematical objects in general? It is not clear if the

indispensable explanatory role is that of mathematics in toto, of mathemat-

ical theories, of properties of mathematical objects, of mathematical objects

or of some particular mathematical objects. As Baker rightly observes, these

are distinct levels, and an attack on EIA should take into account all these

different levels [Baker, 2009, p. 615].

I will not give here the a full presentation of the debate about EIA, nei-

ther I will address the numerous questions which belong to that debate and

which are resulting in a very rich discussion in philosophy of mathematics.

Rather, for my discussion here, I will assume the following reading of premise

(2): there are some mathematical objects that play an essential role in ev-

ery genuine explanation of some scientific fact. These mathematical objects

are then indispensable to explain a scientific fact because without a refer-

ence to them the genuine explanation could not be given. This reading of

premise (2) does consider those and only those mathematical objects that

are explanatorily indispensable in the scientific practice. The resulting ar-

gument is referred to as ‘strong EIA’ [Baker, 2009, p. 616]. In addition to

this first EIA, one may adopt a weaker reading of premise (2) and consider

that every adequate explanation of a scientific fact involves reference to some

mathematical objects. This reading does correspond to a weaker version of

the EIA. Both these readings of premise (2) lead to an argument for realism

concerning mathematical entities, but while the first leads to an argument

for the existence of some mathematical entities (the strong EIA), the latter

leads to an argument for the existence of mathematical entities in general
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(the weak EIA). Henceforth I will concentrate on the strong EIA and for

simplicity I will refer to it simply as EIA44.

Does my approach have something interesting to say on the EIA? I think

it does. In particular, my approach to MEPP supports the idea that the

inference obtained through EIA is not viable, but for reasons different from

those of Bangu, Leng or Saatsi. In this subsection I am going to suggest how

such an argument can be constructed.

There are two possible strategies to see how my framework can be used to

undermine the correctness of the EIA, and both focus on the expression ‘in-

dispensable explanatory role’ which appears in the two premises. According

to my framework, in MEPP the mathematical conceptual resources permit a

reconceptualization and the application of an ability to reason (intellectual

tool). Hence, if there is some mathematics which plays an indispensable ex-

planatory role, the attention should be addressed to the particular pieces of

mathematics I call conceptual resources.

A very natural move to start would be to consider that conceptual re-

sources should be seen as ‘explanatorily indispensable’ because they permit

us to apply a particular ability to reason. At face value, this idea accords

well with my intuitions about the role of conceptual resources and intellectual

tools. Without a conceptual resource it is not possible to apply any ability

to reason, therefore a conceptual resource is indispensable for explanation.

However, my conceptual resources are concepts, not objects, and premise

(2) is about mathematical objects. A first strategy to attack EIA is then

straightforward and it consists in observing that, from the perspective of my

approach, there are no mathematical objects which do play an ‘indispensable

44Observe that the distinction between a strong and a weak indispensability argument
has been inherited from the discussion in the context of the original Quine-Putnam indis-
pensability argument: “One should distinguish two Quinean indispensability arguments.
In the next section I will propose a weak indispensability argument: one can have a war-
rant for positing mathematical entities on the basis of their indispensability in all normal
scientific theories. This is a real argument for the existence of mathematical objects, and
is hard to overcome. In the third section I will propose a strong indispensability argument:
the ontology consists of all the mathematical entities that are really indispensable and only
these” [Decock, 2002, p. 232].
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explanatory role’ in science. Therefore the EIA is not correct simply because,

once my approach is endorsed, premise (2) must be regarded as false. There

is, however, a second strategy to attack EIA, and it is to this strategy that

I will concentrate in what follows below. It consists in assuming that there

are some mathematical objects which are purported to fall under conceptual

resources. With this assumption and my framework in mind, EIA can be

rewritten in a new form without losing the intuition which stands behind the

original argument. However, this new formulation of the argument must be

considered as not correct because based on a false premise.

Assume that every mathematical conceptual resource has one or more

mathematical objects purported to fall under it (the mathematical concept

which acts as a conceptual resource is a sortal concept). Then, if some math-

ematical object purports to fall under a concept (a conceptual resource) that

plays an indispensable explanatory role, we can focus on this role of mathe-

matical concepts without losing the reference to mathematical objects. This

would preserve the general idea of the original argument, namely that some

mathematical objects are supposed to exist because there is some piece of

mathematics which plays an indispensable explanatory role in our science,

although slightly modifying it by introducing the mention of concepts in

premises (1) and (2). Call this argument EIA*:

EIA*

(1*) We ought rationally to believe in the existence of any entity that is pur-

ported to fall under concepts that plays an indispensable explanatory

role in our best scientific theories.

(2*) Mathematical objects are purported to fall under concepts that play

an indispensable explanatory role in science.

(3*) Hence, we ought rationally to believe in the existence of mathematical

objects (purported to fall under these concepts).

With respect to the original EIA, the argument above shifts the atten-

tion from the indispensable explanatory role of mathematical entities to that

407



of concepts. The explanatory role is thus played by concepts, and not by

mathematical objects. The motivation for this change of perspective is not

only based on the demand to adapt the original argument to my perspective

on MEPP. There is a further reason to consider EIA* rather than the orig-

inal argument, and precisely the fact that EIA is subject to a phenomenon

that Crispin Wright and Martin Davies have called ‘transmission failure’

([Wright, 2000], [Wright, 2002]). This phenomenon concerns the failure, on

the part of some deductively valid inferences, to transmit one’s justification

for believing the premises. It is quite simple to see how this occurs in the

EIA. Premise (2) states that mathematical objects do play an explanatory

role in science. To justify this claim we have to suppose that they exist. How-

ever, the existence of some mathematical objects is exactly the conclusion (3)

we want to reach. EIA, therefore, results in a logically valid argument but

it exhibits circularity. To consider that mathematical objects play such an

explanatory role introduces this epistemic feature into the deductively valid

inference, and premise (2) must be seen as begging the question. This is

why I find more plausible to focus on the idea that the explanatory role is

played by concepts, and mathematical objects get involved in such a type of

argument only because they are purported to fall under these concepts.

Let’s now return to EIA*. What I want to show is that the argument

is not correct. More precisely, I want to show that the choice of the mathe-

matical concepts playing an explanatory role in science is arbitrary because

sensitive to contextual factors. To establish such arbitrariness would amount

to showing that these concepts are not explanatorily indispensable. As Baker

writes in the context of his example of indispensable mathematical explana-

tion of a physical phenomenon:

One way to attack the claim that the mathematics involved in the

explanation of the cicada period lengths is indispensable is to show

that somehow the choice of mathematical apparatus here is arbitrary.

The thought is that if it can be shown that the choice of mathemati-

cal apparatus is just one of many equally good alternatives then the

408



particular mathematical objects involved cannot be indispensable to

the overall explanation. [Baker, 2009, p. 614-615]

Remember that, according to my approach, the use of conceptual re-

sources depends on contextual factors. For instance, in one particular sci-

entific context a particular conceptual resource might be employed because

it allows to apply a particular ability to reason. In another context, to ex-

plain the very same phenomenon, a different conceptual resource might be

preferred because it permits us to apply another ability to reason which is

considered to be more natural or preferable in that particular context. This

suggests the idea that a particular conceptual resource can be dispensable,

and that is because its explanatory role is extremely sensitive to the context

in which the explanation is made. Furthermore, let me mention that in a

specific context the use of an ability to reason through a conceptual resource

might be regarded by scientists as providing zero explanatory power. This

can happen, for instance, in a context where that particular ability to rea-

son has not been developed or is not accepted by the scientific community.

In that context, the particular conceptual resource which permits the use

of that ability will not carry any explanatory power. Conceptual resources

are necessary, in general, for explanation. Nevertheless, specific conceptual

resources are used in a specific context, i.e. their use is context-dependent.

These considerations suggest, again, that explanation is a contextual affair.

More importantly, they suggest that if the explanatory role of a conceptual

resource is dependent on the specific context in which the explanation is

made, the fact that it appears or not in the EIA* must also be regarded

as a contextual affair. To sum it up, the explanatory role of mathematical

concepts is not a function which has universal validity and premise (2*) in

the EIA* must be rewritten with an explicit mention of the context, namely,

by including the following premise:

(2**) Mathematical objects are purported to fall under concepts that play

an explanatory role in context C.
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Observe that, with respect to premise (2*), premise (2**) does not men-

tion the indispensable explanatory role of concepts (conceptual resources).

And this because, if the explanatory role of conceptual resources depends

on contextual factors, the choice of conceptual resources is arbitrary because

based on the preferences of the scientists belonging to a particular context.

To accept this contextual sensitivity in EIA* would amount to accept the

(bizarre) idea that the existence of some mathematical objects is sensitive to

contextual and pragmatic factors. Premise (2**) is therefore in conflict with

premise (2*) appearing in EIA*, and the latter must be considered as not

true (there are no such indispensable concepts playing an explanatory role in

every context in science).

Nevertheless, it might be observed that some mathematical concepts do

play an explanatory role in context C, and then these concepts are explanato-

rily indispensable in that context. Roughly, in that context the explanation

of a physical phenomenon can be given only by making reference to some par-

ticular conceptual resources. In this case, premise (2**) should be rewritten

with an explicit mention of the indispensable role played by these concepts:

‘Mathematical objects are purported to fall under concepts that play an in-

dispensable explanatory role in context C’. Call this premise (2***). This

would not block the existential inference in the EIA*, because to say that

mathematical concepts have an indispensable explanatory role depending on

the context does not undermine the following argument (EIA* with context-

dependence, or EIA***):

EIA* context-dependent (EIA***)

(1***) We ought rationally to believe in the existence of any entity that is pur-

ported to fall under concepts that plays an indispensable explanatory

role in science in context C.

(2***) Mathematical objects are purported to fall under concepts that play

an indispensable explanatory role in context C.
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(3***) Hence, we ought rationally to believe in the existence of mathematical

objects (purported to fall under these concepts).

In fact, if some mathematical concepts do play an indispensable explana-

tory role in context C, the EIA* with context dependence (EIA***) can be

used to infer the existence of the mathematical objects purported to fall un-

der these concepts. However, according to my approach, the explanatory

role of conceptual resources, and then of mathematical concepts, is not in-

dispensable within a particular context. This is because, in order to explain

a physical phenomenon, a conceptual resource can be used in context C (for

instance because it permits to use a particular ability to reason), but in

the same context C another conceptual resource might be used as well. In

this case, there is no concept which would play an indispensable explana-

tory role in context C, but its role would be dispensable. Therefore premise

(2***) would not be compatible with my approach and the inference obtained

through EIA*** cannot be accepted.

Finally, my discussion above discredits the conclusion that the existence

of some mathematical objects can be inferred from considerations about the

explanatory role of mathematical concepts. The revised version of the EIA

(EIA*), seen from the perspective of my approach, must be considered as

not correct because premise (2*) is false45.

A possible moral of this subsection, at least if we accept my approach to

explanation and the argument I proposed against EIA*, is that the notion of

45Remember that the strong EIA concerns the existence of some mathematical objects,
while the weak EIA that of mathematical objects. Of course, I have focused on the strong
EIA and my argument does not undermine the existential claim resulting from the weak
EIA. In fact, according to my framework, mathematics is necessary to genuine MEPP, and
then every genuine explanation of a scientific fact will inevitably involve reference to some
mathematical objects. To introduce a mention of the context would not undermine the
weak EIA simply because in every context the genuine explanation involves reference to
mathematical concepts (conceptual resources) and to the mathematical objects purported
to fall under these concepts. Reference to mathematics is indispensable for MEPP. Un-
fortunately, I do not have any argument against the weak EIA. I suppose, however, that
a possible strategy to undermine the weak EIA and preserve my approach would be to
propose a nominalist paraphrase of the mathematics which is involved in the explanation,
thus showing that mathematics is dispensable (although being explanatorily relevant).
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explanation does not carry any ontological value. Furthermore, a general re-

mark concerning EIA would be to note that the transmission failure in that

argument reveals a confusion between ontological and epistemological lev-

els. Explanation, in line with my approach in terms of conceptual resources

and intellectual tools, seems to be an epistemic affair. And the notion of

explanation need not track the ontological status of mathematical entities.

If influenced by subjective factors, as my approach suggests, the notion of

explanation cannot be used in inferences such as EIA whose conclusion has

ontological nature46 .

8.6 Three big questions for my approach

There are, of course, various difficulties with my framework which have

not been solved or even approached in this final chapter. My ideas are still

at a preliminary stage, and the fact that the notion of explanation appears in

numerous and distinct topics in the philosophy of science makes things even

more difficult.

There are at least three big questions which are still unanswered (at least

explicitly) and which are extremely relevant for my approach to explanation:

α What about the notion of understanding and its linkage with explana-

tion?

β It is reasonable to maintain that in science we always use an ability

to reason, even if we welcome the idea that these abilities come under

different species and are employed in particular contexts. Hence, ac-

cording to my notion of intellectual tools which act in genuine MEPP,

every practice in science must be regarded as genuinely explanatory

and the notion of MEPP would result as meaningless. How can we

avoid this trivialization?
46Panza and Sereni raise a similar point about the necessity to make clear how the

notion of explanation, which might be influenced by subjective factors that depen upon
our (limited) cognitive capacities, can be used in an argument such as EIA which leads to
a conclusion of ontological nature [Panza et al., 2010, p. 202].
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γ It has been claimed that there is a mutual interaction between intellec-

tual tools and conceptual resources: we acquire conceptual resources

through the use of tools and we acquire intellectual tools through the

use of conceptual resources. Intellectual tools, as conceptual resources,

are therefore not unchangeable but can vary over time. How is this

interplay between the conceptual resources and intellectual tools sup-

posed to work?

8.6.1 Understanding and explanation (α)

Let me begin by concentrating on question α. It is often assumed that ex-

planation and scientific understanding bear a direct and intimate connection

[De Regt, 2009]. Moreover, the wish of having a relationship explanation-

understanding as a desideratum of a theory of scientific explanation has been

expressed by different authors. Just to list some of them: [Friedman, 1974,

p. 6], [Tuomela, 1980, p. 212], [Railton, 1981, p. 243-244], [Kitcher, 1981, p.

508], [Achinstein, 1983, p. 16], [Salmon, 1989, p. 134-135], [Lewis, 1993, p.

185], [Weber, 1996, p. 1], [Schurz, 1999, p. 98], [Tappenden, 2005, p. 166].

For instance, in section 3.1 we have seen how Michael Friedman built his

theory of explanation starting from the assumption that every theory of ex-

planation should connect explanation and understanding: “We can find out

what scientific understanding consists in only by finding out what scientific

explanation is and vice versa” [Friedman, 1974, p. 6]. Friedman regarded

the notion of scientific understanding as depending on psychological factors,

but having an objective value for a group of individuals and being epistemi-

cally relevant for the philosophical analysis of the notion of explanation. In

his unification account, scientific understanding increases as we decrease the

number of independent assumptions that are required to explain what goes

on in the world.

On the other hand, some philosophers have refused the idea that a theory

of explanation should inform on such a linkage and they have adopted what

Henk De Regt has called the “objectivist view” of the relation between ex-
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planation and understanding [De Regt, 2009]. According to this view, whose

major advocate is Carl Hempel, understanding should be banned from the

philosophical discourse concerning explanation. The objectivist view looks

at the nature of explanation as objective, while the notion of understanding

is seen as having a pragmatic and subjective value, i.e. it has to do with

the individual beliefs or attitudes of the scientists involved in the process

of explaining [Hempel, 1965]. The philosophers of science, whose aim is to

give an objectivist account of explanation (at least on this Hempelian view),

must then regard understanding as philosophically irrelevant for explanation.

For instance, J.D. Trout, a contemporary defender of the objectivist view,

cosiders the feeling of understanding as a subjective experience that may be

induced by explanations but which should not be regarded as epistemically

relevant to these [Trout, 2002].

Therefore, there is no consensus on the fact that understanding does play

an epistemic role in explanation and that our theories of explanation should

be built in order to incorporate such a notion (whatever this notion may

be). There is no doubt, however, that a well formulated picture of explana-

tion should, in principle, have something to say on the linkage explanation-

understanding in science (or on the fact that there is no such linkage)47. The

aim of this subsection is to propose a characterization of such a linkage from

the perspective of my approach. In doing that, I will use as a guide the

following remark put forward by Wesley Salmon:

Scientific understanding is, after all, a complex matter; there is every

reason to suppose that it has various different facets [Salmon, 1989,

p. 183]

Observe that, in line with Van Fraassen’s approach to explanation, I con-

sider ‘explanation’ as the result of a practice in science (as in our everyday

life). This practice is performed by a scientist or a scientific community

47For instance, Friedman observed: “I don’t see how the philosopher of science can afford
to ignore such concepts as ‘understanding’ and ‘intelligibility’ when giving a theory of the
explanation relation” [Friedman, 1974, p. 8].
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in a precise scientific context (a community where some corpus of beliefs is

shared). The same holds for MEPP, where the practice of explaining draws

on mathematical facts and causal considerations are supposed to play no role.

However, very differently from Van Fraassen, I claim that when an explana-

tory practice is performed, scientists do express their preference for a partic-

ular way to explain the phenomenon (even if they dispose of an alternative

formulation of it), and this preference can be accounted for in terms of intel-

lectual tools and conceptual resources. To put it in other words, scientists do

attribute explanatoriness to a particular account, and to this genuine MEPP

there corresponds the use made by scientists of intellectual tools through

mathematical conceptual resources. The crucial point, which condenses (and

anticipates) my intuitions about the linkage explanation-understanding, is

that to this genuine MEPP there corresponds a genuine sense of understand-

ing (an explanatory understanding). In this sense, I will make no sharp

distinction between a mathematical explanation of a phenomenon X and the

understanding of the same phenomenon, for having an understanding of X

amounts to having a genuine explanation of X. However, I will claim that

there is a ‘pragmatic’ understanding which is involved in such a genuine ex-

planation and which is necessary to it. Before I substantiate this claim, let

me turn to De Regt’s 2009 paper “The Epistemic Value of Understanding”

[De Regt, 2009] as to make clear to what ‘facets’ of understanding I am re-

ferring to.

De Regt distinguishes three different types of understanding which can

be used in connection with scientific explanation [De Regt, 2009, p. 588]:

(FU) Feeling of understanding = the subjective psychological experiences

accompanying an explanation.

(UT) Understanding a theory = being able to use the theory (pragmatic

understanding).

(UP) Understanding a phenomenon = having an appropriate explanation of

the phenomenon.
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The feeling of understanding (FU) is neither necessary nor sufficient for

(UP), as Hempel and Trout observed. On the other hand, contra the ob-

jectivist view, De Regt claims that (UT) is a necessary condition for (UP),

where (UT) amounts to “the ability to use relevant theories to construct

explanations”. He writes:

I will argue that actual scientific explanation involves a kind of under-

standing that is pragmatic and hence not purely objective. This type

of understanding is based on skills and judgments of scientists and

cannot be captured in objective algorithmic procedures. It is there-

fore incompatible with the objectivist conception of explanation and

understanding favored by Hempel and Trout. The pragmatic kind of

understanding that I claim is crucial to scientific explanation is not a

product of explanation [De Regt, 2009, p. 587]

Now, observe that the pragmatic understanding (UT) is pragmatic in the

sense that it pertains to the scientists involved in the process of explanation.

More precisely, it has to do with the attitudes and abilities of the scientists

involved in this process. However, it is not arbitrary because within a scien-

tific context a group of individuals might possess the same abilities or skills.

According to De Regt, a skill is “the ability to construct deductive argu-

ments from the available knowledge”48. To consider that particular skills of

scientists are crucial, in a specific context, for constructing explanations and

for achieving understanding (UP) in that context entails that understand-

ing has a pragmatic dimension that is relevant to the epistemic aim (UP)49.

48For instance, when asked to explain why jets fly, the scientist should be able to use
the Bernoulli’s principle together with the background conditions in order to derive the
explanandum. This fits the phenomenon into a broader theoretical framework. To merely
know the Bernoulli’s principle and all the background conditions is not enough to explain
the phenomenon. We have to be able to use these informations in the right way. The
“extra ingredient needed to construct the explanation is a skill: the ability to construct
deductive arguments from the available knowledge” [De Regt, 2009, p. 588].

49Moreover, as De Regt observes: “although it is possible and useful to distinguish an-
alytically between the epistemic and the pragmatic, the two are inextricably intertwined
in scientific practice: epistemic activities and evaluations (production and assessment
of knowledge claims) are possible only if particular pragmatic conditions are fulfilled”
[De Regt, 2009, p. 590].
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Furthermore, it seems that by proposing (UP), De Regt is conflating un-

derstanding (of a phenomenon) and explanation (of the same phenomenon),

where he regards an ‘explanation’ as an “argument that fit a phenomenon

into a broader theoretical framework” [De Regt, 2009, p. 593-594]50. This

is, I think, a crucial point. And the sense of ‘understanding a phenomenon’

which appears in (UP) can be made clear further. Very generally, we can

individuate two uses of ‘understanding’: when understanding is claimed for

some object, such as some subject matter, and when it involves understand-

ing that something is the case. As Jonathan L. Kvanvig has pointed out,

these two uses of understanding can elucidate other uses of understanding,

for instance understanding why, understanding when or understanding where

[Kvanvig, 2003]. Now, I suppose that the use of understanding in (UP) is

the following: ‘understanding why something is the case’. For instance, un-

derstanding why the particle has passed through the wall, why jets fly or

why the particle has that particular behaviour in the Hénon-Heiles potential.

Nevertheless, understanding why something is the case can be accounted for

in terms of understanding that something is the case. As Kvanvig observes:

Understanding why, when, where, and what are explicable in terms

of understanding that something is the case. In each such case there

is some truth that explains the special kind of understanding in ques-

tion, and the person’s relationship to that truth can be explicated

in terms of understanding that something is the case. For example,

understanding why something is the case requires understanding that

a certain explanation is correct, and understanding what happened

requires understanding that such-and-such happened [Kvanvig, 2003,

p. 189-190]

This suggests that a “correct” explanation can be used to understand

why something is the case. And Kvanvig’s claim is very similar to De Regt’s

50There is, of course, more on this point and De Regt’s idea of the connection be-
tween explanation and scientific understanding. However, here I will limit my discussion
to De Regt’s notions that I consider as relevant to elucidate the linkage understanding-
explanation in my approach.
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claim that to have understanding of a phenomenon (UP) amounts to having

an “appropriate” explanation of it. Both the authors require that the ‘under-

standing of why something is the case’ be based on an explanation which has

been previously evaluated as “correct” or “appropriate”. However, differently

from Kvanvig, De Regt considers that the appropriateness of an explana-

tion depends on the various virtues of the theory in question (visualizability,

causality, unifying power, simplicity) and on the capacity (the skill) scientists

have to use these virtues in constructing their explanations:

In this pragmatic dimension two elements play a crucial role: whether

scientists are able to use a theory for explaining a phenomenon de-

pends both on their skills and on the virtues of the theory. More pre-

cisely, it depends on whether the right combination of scientists’ skills

and theoretical virtues is realized. Particular virtues of theories, e.g.,

visualizability or simplicity, may be valued by scientists because they

facilitate the use of the theory in constructing models and predicting

or explaining phenomena; in this sense they are pragmatic virtues.

Nevertheless not all scientists value the same qualities: their prefer-

ences are related to their skills, acquired by training and experience,

and to other contextual factors such as their background knowledge,

metaphysical commitments, and the properties of already entrenched

theories. [De Regt, 2004, p. 105].

Where does my approach to MEPP locate with respect to De Regt’s and

Kvanvig’s claims? A clarification of my position in this context requires

a step-by-step strategy. I will begin by considering how De Regt’s sense

of understanding (FU), (UT) and (UP) can be used in the context of my

approach. Next, I will reconsider the Hénon-Heiles example to make clear

how a particular sense of understanding is involved in this MEPP (and in

MEPP in general). Finally, I will point to the general linkage explanation-

understanding from the perspective of my approach and I will maintain that

understanding why something is the case is, at least in the context of MEPP,

just a gloss of “we have a genuine MEPP”. On the other hand, a pragmatic

sense of understanding does operate in MEPP at the level of intellectual
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tools.

I agree with De Regt (and Trout and Hempel) on the fact that (FU) is not

relevant for the scientific understanding of a phenomenon and for scientific

explanation (it is neither necessary nor sufficient for (UP)). And I assume

that it is neither relevant for MEPP. I also agree with De Regt in consider-

ing that there is a pragmatic sense of understanding (UT) which has to do

with some skills possessed by scientists and which operates in explanation.

However, in the context of MEPP (and of my approach), I consider that this

pragmatic understanding concerns the ability to reason qualitatively on a

mathematical state of affairs (and not on a scientific theory) and connect the

qualitative information obtained to an accepted body of background knowl-

edge. Concerning the ability to ‘connect the qualitative information to an

accepted body of background knowledge’ employed in pragmatic understand-

ing, observe that the fact that the matter understood should be put in a wider

context and related to a body of previously accepted beliefs is often regarded

as a precondition for understanding. For instance, Kvanvig writes:

Understanding requires the grasping of explanatory and other coherence-

making relationships in a large and comprehensive body of informa-

tion. One can know many unrelated pieces of information, but under-

standing is achieved only when informational items are pieced together

by the subject in question. [Kvanvig, 2003, p. 192]

Hence, instead of (UT), henceforth I will adopt the following sense for

pragmatic understanding:

(UM) Understanding a mathematical state of affairs = being able to rea-

son qualitatively on a mathematical state of affairs by connecting this

qualitative information to an accepted body of background knowledge

(pragmatic understanding)

Finally, about the third sense of understanding which is used in expla-

nation, namely (UP), I agree with De Regt in considering that the under-

standing of a phenomenon amounts to having an appropriate explanation
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of the phenomenon. However, I consider that an “appropriate” explanation

of a phenomenon is an explanation in which: i) an ability to reason is used

through a conceptual resource, and ii) this ability to reason permits to reason

qualitatively on a mathematical state of affairs and connect this qualitative

information to an accepted body of background knowledge (thus obtaining a

pragmatic understanding (UM) of such a state of affairs). Let me elucidate

these intuitions in the context of the Hénon-Heiles example51.

In the context of the Hénon-Heiles example, I claimed that we are able

to perceive the relations between the energy and the behaviour of the system

through our ability to reason visually (intellectual tool). Of course, visual

reasoning is necessary but not sufficient for explanation. To reason visually

on the surface of section does permits to make qualitative considerations and

a number of connections and inferences, but these must be considered as

adequate from a scientific point of view (they must conform to our scientific

background knowledge). The crucial step consists then in recognizing that

these connections, for instance the relationship between the energy and the

trajectories on the Poincaré section, are ‘good’ because they are conformal to

our background scientific knowledge and our beliefs (in a specific context C).

To this step there corresponds a pragmatic understanding (UM), which is

necessary to the overall MEPP. Pragmatic understanding (UM) is therefore

given, in line with De Regt’s idea, by the use of a particular ability possessed

by the scientist providing the explanation in a specific context52. This partic-

51I presented the example in section 7.1. Here I will use only some general considerations
about the example, those which I consider as necessary to state my point about the linkage
explanation-understanding.

52In passing, let me note that although there are various convergences between De Regt’s
approach and mine on this point, there are also some substancial differences. Perhaps the
most evident concerns the fact that De Regt considers that pragmatic understanding con-
cerns skills of scientists, where a skill is defined by him as the ability to construct deductive
arguments from the available knowledge [De Regt, 2009, p. 588], while in my approach
pragmatic understanding has to do with an ability to reason (which is not necessarily
the ability to construct deductive arguments from the available knowledge). Furthermore,
remember that in subsection 8.2.1 I have presented De Regt and Dieks’ notion of ‘intelligi-
bility’ of a theory. According to De Regt, the notion of intelligibility rephrase the notion of
pragmatic understanding of a theory: If scientists have a pragmatic understanding of a the-
ory, i.e. they are able to use that theory, the theory is intelligible to them [De Regt, 2009,
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ular ability to reason cannot be captured objectively, but it is neither purely

subjective nor relative because it is shared (and used) by a group of scientists

in a specific context. Finally, to have an understanding of the phenomenon

(UP) is, to use De Regt’s terminology, to have an appropriate explanation.

This explanation is appropriate (in a specific context) because it involves

the use of an ability to reason and this ability incorporates the pragmatic

understanding expressed by (UM).

Now, let me move to some more general considerations about the linkage

explanation-understanding and my approach to MEPP. Remember that my

approach is neither objective, because explanation is dependent on the sub-

ject, nor entirely subjective, because the use of intellectual tools is permitted

by a particular virtue of some mathematical concepts, which is something

external to the scientist performing the explanation. To say that we have

a genuine MEPP when we have a pragmatic understanding (UM) is a very

natural idea within my framework. Explanation has to do with our abilities

to reason in science, and these abilities to reason are developed according

to our background knowledge. It is then reasonable to expect that a phe-

nomenon will be considered as genuinely explained in a specific context when

the scientist will be able to use an ability to reason that he considers as nat-

ural in that context. The use of these abilities makes the scientist confident

in the explanation. And to the use of these abilities, as I claimed in the

previous paragraph, there corresponds a pragmatic understanding (UM) of

the mathematics involved in the explanation. This pragmatic understanding

is not given by a sequence of calculations, and there is ‘something extra’ in

it which goes behind mathematical knowledge and which is necessary to ex-

planation.

p. 593]. Intelligibility (and then pragmatic understanding) is obtained through a particular
combination of skills and theoretical virtues. The theoretical virtues used in combination
with the skills function as “conceptual tools” for achieving understanding and explanation.
However, in subsection 8.2.1 I have pointed to the fact that there is a difference between
De Regt and Dieks’ conceptual tools and my intellectual tools. To put this difference in
the present context, in my approach the pragmatic understanding is obtained through an
intellectual tool, and not through a conceptual tool.
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Of course, the negative condition on calculus is not the full story. Cal-

culations could be necessary to obtain, at a precise step, a pragmatic un-

derstanding (UM). Furthermore, there are other conditions of adequacy that

are required in order to apply an ability to reason and have a understanding

(UM) and (UP). These conditions regard the relevant aspects of the physical

phenomenon which are mirrored by the mathematical model. For instance,

in the case of Hénon-Heiles, the energy of the particle is a relevant aspect of

the phenomenon which has a corresponding term in the Hamiltonian formu-

lation. When we apply our ability to reason visually on the Poincaré section,

we are considering that such a mapping is established and that the mathe-

matical formalism maps this (and others) relevant feature(s).

Finally, according to my intuitions, having a genuine MEPP amounts to

an understanding of why a phenomenon occurs. And in this genuine MEPP

a pragmatic understanding (UM) operates and it is conveyed through an in-

tellectual tool. On the other hand, of course, I do not exclude that in science

there are other kinds or senses of ‘understanding why’ which might be ob-

tained without recurring to genuine MEPP53. Unfortunately, I do not have

anything interesting to say on these other facets of understanding and on

the difference between these and the two senses of understanding (UM) and

(UP) that I consider as associated to MEPP.

Very curiously, by performing such a move in my analysis, namely by iden-

tifying a genuine MEPP with understanding, it seems that I am falling back

to the origins of the debate on scientific explanation. In fact, at prima facie,

my considerations well accord with a general observation that has been pro-

posed in the context of scientific explanation and that appears in the opening

lines of the famous Volume XIII of the Minnesota Studies in the Philosophy

53For instance, Peter Lipton considers various kinds of knowledge (causation, necessity,
possibility and unification) as cognitive benefits given by an explanation, and focuses on
those rather than on the explanation itself [Lipton, 2009]. He identifies each of those
benefits with understanding and claims that each of them might be acquired “by routes
that do not pass through explanation” [Lipton, 2009, p. 44]. This is why, for him, we
can have understanding without explanation. While I consider Lipton’s argument very
thought-provoking, I will not explore this issue here.
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of Science devoted to the topic of scientific explanation:

The search for scientific knowledge extends far back into antiquity. At

some point in that quest, at least by the time of Aristotle, philosophers

recognized that a fundamental distinction should be drawn between

two kinds of scientific knowledge –roughly, knowledge that and knowl-

edge why. It is one thing to know that each planet periodically reverses

the direction of its motion with respect to the background of fixed

stars; it is quite a different matter to know why. Knowledge of the

former type is descriptive; knowledge of the latter type is explanatory.

It is explanatory knowledge that provides scientific understanding of

our world. [Salmon, 1989, p. 3]

I accept that explanatory knowledge provides scientific understanding of

our world. However, there is a profound difference between the conception

of explanatory knowledge and scientific understanding that the author of the

previous passage had in mind and the conception which results from my ap-

proach to MEPP. In my view, explanation has not a purely objective value,

i.e. it is not independent of the subject doing the explanation, and the same

holds for understanding (UP). To say that we have a genuine MEPP in a

context X does not entail that in a different scientific context Y this ex-

planation will be regarded as genuine. And this has a direct repercussion

on the character of understanding (UP). To have understanding of why a

phenomenon occurs is to have understanding in context X, and not to have

understanding simpliciter of why that phenomenon occurs54.

Although still vague at this stage, I suppose that the considerations put

forward in this subsection can be accommodated further within the view

on scientific understanding proposed by Henk De Regt and Dennis Dieks

([De Regt et al., 2005] and [De Regt, 2009]). For instance, I regard their

criteria CUP (criterion for understanding phenomena) and CIT (criterion

54This means, of course, that we can understand a phenomenon in a context X where
our scientific beliefs are not correct (for instance, they are not empirically adequate).
In that context an explanation will draw on such a corpus of beliefs, and the resulting
understanding will be considered as genuine (in that context!).
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for the intelligibility of theories) as good candidates to model, if properly

adjusted in the context of MEPP, my considerations about the role of in-

tellectual tools in the explanation and the understanding of a physical phe-

nomenon. Furthermore, I think that a potential direction for future analysis

would be to explore the use of intellectual tools in mathematics alone and

see how my intuitions are supposed to work in the context of mathematical

explanation within mathematics. However, I have not explored these routes

here and I have opted for a more general discussion which is, again, only a

sketch of the nature of understanding and of the role that such a concept can

play in MEPP once my approach is endorsed.

8.6.2 Abilities to reason (β)

Question β concerns our abilities to reason and a possible trivialization of

my approach. In particular, if in science we always use one o more abilities to

reason, therefore according to my approach every scientific practice should be

regarded as genuinely explanatory. In this subsection I am going to propose

some speculations about a possible way to avoid this trivialization.

A first argument again this trivialization would be: the kind of abilities

to reason that I am considering are employed in genuine MEPP only when

there are some conceptual resources which permit their use. For instance,

someone might claim that the ability to perform a very complicated calculus

should be considered as an ability to reason. However, this ability does not

correspond to an intellectual tool because it can be used without recurring

to any conceptual resource. Examples from scientific practice would support

the latter claim by showing that such an ability is not used through a con-

ceptual resource. On the other hand, this defense seems to be too weak and

even ad hoc. The problem is that I do not have an argument to support the

idea that an ability to reason used without a conceptual resource does not

carry explanatory power. Perhaps, a justification for this argument might be

found by analysing further cases from scientific practice. Nevertheless, I do

not have such a robust analysis at this step.
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There is a second, but still uncomfortable, way to reject the accusation

of trivialization. Consider the ability to reason visually, the ability to reason

asymptotically and the ability to reason causally. Are these abilities cogni-

tively primitive? Are they based on a cognitively primitive faculty of our

mind? Perhaps my observations about the ability to reason causally, put

forward at the end of subsection 8.5.1, can be applied to our ability to reason

visually as well. Although I consider that our ability to reason visually is an

ability we acquire, and therefore it is not cognitively primitive, our capacity

to grasp a kind of knowledge that has a non-propositional complement by

visualizing a particular state of affairs might be reasonably considered as a

primitive faculty (here the parallel is with the faculty I called ‘event discrim-

ination’, which I regarded as cognitively primitive and necessary to reason

causally). For instance, it is reasonable to expect that a child will grasp some

kind of knowledge from a pictorial proof of the Pythagorean theorem (for ex-

ample, just by playing with the squares and learning that there exist some

particular proportions between those squares), even if he will not be able to

fully grasp the Pythagorean theorem. On the other hand, it is reasonable to

expect that, when using his ability to reason visually on the pictorial proof of

the Pythagorean theorem, a trained mathematician will use the same faculty

used by the little child. As in the case of the ability to reason causally, then,

there might be a primitive cognitive faculty which is involved and which is

necessary (but not sufficient) to reason in a particular way. Concerning our

ability to reason analogically, it can be thought that this ability results from

our primitive faculty to recognize structural similarities between two states

of affairs. Nevertheless, again, although there is some faculty which can be

thought as primitive from a cognitive point of view, and which is essential

to develop an ability to reason, our ability to reason analogically can be re-

garded as based on that particular faculty but requiring something more55.

55A child might be able to recognize very simple structural similarities, but it might
be unable to recognize similarities which have a more complicated character (for instance,
functional similarities). As I have remarked in a footnote at the beginning of subsection
8.2.1, cognitive studies suggest that our ability to reason analogically is not a primitive
cognitive ability but should be considered as emerging and developing under the guide of
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To come to my point, although I favour the idea that our abilities to rea-

son are acquired (through practice or education, for instance), I do not have

good arguments to exclude that some particular abilities to reason can be

cognitively primitive (and therefore not acquired), or that there are abilities

to reason which are not based on some cognitively primitive faculty. Con-

sequently, the questions “Are our abilities to reason used in science always

acquired?” and “Are our abilities to reason used in science always based on

some cognitively primitive faculty?” remain open questions. A possible char-

acterization of our abilities to reason (and then of intellectual tools) in terms

of the cognitive primitiveness of the faculties which are employed in them,

or in terms of the cognitive primitiveness of the abilities themselves, would

require an extra analysis which I am not able to propose here. However, I

suppose that such an investigation, which should be carried out under the

guidance of cognitive studies, might provide a possible answer to question β

(and therefore a defense from the accusation of trivialization). For instance,

once such a characterization would be available, it might result that only the

abilities to reason which are based on some cognitively primitive faculty do

act in genuine MEPP, and this would screen off these abilities from other

abilities to reason used in science as well. Furthermore, it might be found

that only the abilities to reason which are cognitively primitive do act in

genuine MEPP, and therefore the abilities to reason which do act in science

but which are not cognitively primitive could not act as intellectual tools56.

In both cases the trivialization advanced in β would be avoided because it

would not be true that all the abilities to reason used in science do contribute

to genuine MEPP.

A final strategy of defense, which is the option I prefere and I consider to

be more natural, is to recognize that there is a particular set of abilities to

reason which acts in MEPP, and to a specific MEPP there correspond the use

certain basic constraints.
56Of course, negative examples might be proposed. For instance, examples in which

two abilities to reason A and B are regarded as being cognitively primitive, or based on
a faculty which is considered as cognitively primitive, but respectively are acting and not
acting in genuine MEPP coming from the scientific practice.
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of one or more of these abilities. Our task as explanation-scholars is to find

the elements of such a set, and identify cases where these abilities are em-

ployed. Of course, these abilities are necessary but not sufficient for MEPP.

As I have pointed out in the previous subsection, their use in genuine MEPP

is extremely sensitive to contextual and pragmatic factors. For instance, a

scientist will consider as genuine explanatory only the MEPP in which are

used the abilities to reason belonging to his educational background, and

these abilities permit to reach a result which is consistent with a previously

accepted corpus of scientific knowledge. By focusing on some cases of MEPP

(MEPP recognized as such in scientific practice), I have proposed the idea

that these abilities act in MEPP when their use is made possible by one or

more conceptual resource. I defined these abilities in action as intellectual

tools. Although we do possess a number of abilities to reason, then, the abil-

ities which do operate in MEPP would be a subset of our abilities to reason

and would be preferred for pragmatic factors which may be attributed to

the scientific context in which the scientist doing the explanation is operat-

ing. This would provide an answer to β and a reply to the accusation of

trivialization.

8.6.3 Mutual interactions between conceptual resources

and intellectual tools (γ)

At the end of section 8.2 I suggested that there is a mutual interaction

between intellectual tools and conceptual resources: we acquire conceptual

resources through the use of intellectual tools and, conversely, we acquire

intellectual tools through the use of conceptual resources. As a consequence,

intellectual tools, as conceptual resources, are not unchangeable but can vary

over time57. Now I want to suggest how this claim can be justified, thus an-

57Let me note that this does not undermine what I have suggested in the final lines
of the previous subsection, namely that the abilities which do operate in MEPP would
be a subset of our abilities to reason. In fact, there might be the possibility that, in the
temporal transition, our abilities to reason in science will change but the abilities which are
used in MEPP will continue to be a subset of these abilities. In this subset there might be
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swering question γ.

We use our abilities to reason and our mathematical concepts to explain

phenomena, but as science changes the use of those concepts and abilities

becomes more (or less) preferable depending on the context. In claiming

that intellectual tools are not immutable over time I want to say that as our

scientific knowledge increases we develop new theoretical concepts, and the

repeated use of these concepts can affect our modes of reasoning in science,

thus providing us with new abilities to reason. For instance, an example

could be provided by the development of the asymptotic techniques analyzed

by Batterman (such as that involving the renormalization group theory)58.

In that case, there will be some initial stage in which the mathematical con-

cepts that come with these techniques will permit the scientist to reason in a

particular way, but this particular way of reasoning will not be accepted (or

will be accepted only partially) by the scientific community. However, opti-

mistically, the repeated use of these mathematical concepts will finally lead

to accept the ability to reason asymptotically as a natural epistemic tool to

be used in our ‘explanatory’ scientific practice. In other words, a conceptual

resource will have permitted the introduction of an intellectual tool. On the

other hand, to use an intellectual tool might provoke the introduction of new

theoretical concepts, which may act as conceptual resources. Very roughly,

I am thinking about Euclidean geometry, where the ability to reason visu-

ally on a diagram was a method to discover new geometrical properties and

elements which are fixed, and which have been left untouched by the temporal transition,
but new elements (new abilities to reason used as intellectual tools) as well. Moreover,
there is also the possibility that in the temporal transition some abilities to reason which
were used as intellectual tools have disappeared (or better, have been discarded) from this
subset. Roughly, this means that an ability to reason which was used as an intellectual
tool in a context C at time t, is not used as intellectual tool in the same context at time
t1 (where t < t1). For instance, the ability to reason asymptotically might not be used to
explain phenomena in a future context C.

58Again, asymptotic techniques might provide just one possible way of analysing the
situation. This means that in a different context scientist might have developed a different
mathematical formalism in order to study the same physical phenomenon. And to this
conceptual apparatus there might correspond an accepted way of reasoning that is very
different from asymptotic reasoning. The teaching we learn is that contextual factors do
play a very important role in our explanatory practice.
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led to the introduction of new mathematical concepts. For instance, Marcus

Giaquinto offers an example where, using a diagram, we are intuitively led

to the discovery of the Pythagoras’ theorem [Giaquinto, 2008, p. 32-33]. In

that case, it is reasonable to think that the discovery of the Pythagoras’ the-

orem will introduce new mathematical concepts, and those concepts might

act as conceptual resources. More precisely, if the ability to reason visually

functions as an intellectual tool (i.e. the practice in which the ability to

reason visually is involved is considered as explanatory), the new (potential)

conceptual resources will have been introduced by such intellectual tool.

Thus the interactions between intellectual tools and conceptual resources

are reciprocal, and these influences are such that intellectual tools, as con-

ceptual resources, are not unchangeable but can vary over time.

There is a remark which must be added here. In introducing this last

part I have indicated, as an additional payoff of my approach, the fact that

my framework sees as extremely favourable the intervention of history of

mathematics (and history of science in general) as an instrument to inves-

tigate MEPP. This claim can be justified by observing that, to analyse the

mutual interactions between conceptual resources and our abilities to reason,

or even the different use of conceptual resources and intellectual tools in a

mathematical explanation of a phenomenon, we are often demanded to use

the history of science as instrument. From the history of mathematics we can

learn how MEPP change and what are the differences between two MEPP

belonging to very different mathematical contexts. More precisely, we learn

how conceptual resources and intellectual tools are used in genuine MEPP

(MEPP recognized as such in scientific practice), and how they change or

develop through history. The importance of such a historical perspective is

clear, for instance, if we consider the illustration of conceptual resources and

intellectual tools given in the case of Euler’s theorem, in subsection 8.4.4. In

order to give a quick analysis of how the use of conceptual resources and in-

tellectual tools changed from Euler’s original explanation to the modern one,

I had to turn to Euler’s original proof (together with a look at his mathe-
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matical and scientific practice). To observe that some geometrical conceptual

resources are now embedded in the framework of modern algebra required,

of course, historical considerations. The historical component was also es-

sential to stress the point that MEPP depend on the context in which they

are produced. This is why I claimed that my approach to MEPP can benefit

from the intervention of the history of science and the history of mathemat-

ics. This idea excellently reflects and even interprets the desire of various

philosophers who demanded for a strict continuity between the history and

the philosophy of mathematics.

History of mathematics can give us a better comprehension of MEPP,

and it should be considered as an important instrument to study conceptual

resources and intellectual tools (as someone pointed out in 1976, philosophy

of mathematics without history of mathematics is in danger of becoming

“empty”). I recognize, however, that to perform such a combined analysis

can result in an extremely long and even intricated investigation.

8.7 Concluding remarks

In this last chapter I presented my approach to MEPP. I applied it to

a case of MEPP and I suggested how the same schema can be used in the

examples of MEPP proposed by the authors studied in part I and part II.

Moreover, in my discussion I have proposed the idea that this schema can

be generalized. As natural, however, the details of this generalization (and

of an application to different cases of MEPP recognized as genuine) require

further investigations and assessments.

Intellectual tools are (epistemic) utilities which are employed through

our conceptual resources (and, implicitly, our background knowledge which

is context-dependent and varies over time and across scientific communities).

To use some mathematical concepts (rather than others) to explain the world

amounts to using a hammer (together with our ability to use it), rather than

a table or our hands, to drive a nail.
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Far from the Herculean task of giving any comprehensive story about

explanation, the more modest purpose of this final part was to contribute to

a debate which is only at its earliest stage and whose development could have

strong repercussions on different areas of the philosophy of mathematics and

of the general philosophy of science. Optimistically, the notions sketched in

these last two chapters might learn from new case studies and approaches to

MEPP. In particular, as I stressed before, I still have not offered a robust

characterization of conceptual resources and intellectual tools, but only an

intuitive one. Further work has to be done to offer an adequate definition of

these concepts and their interplay, as further work is required to investigate

the role of these concepts in debates of philosophy of science in which the

notion of MEPP (and explanation in general) is regarded as playing a central

role (for instance, in the debate about the acceptability or not of the EIA,

or in that concerning the linkage explanation-understanding).

Again, I have not provided certain answers. Nevertheless I hope to have

given some potential directions of analysis, and to have raised a couple of

questions which will be useful for the investigations to come. After all, as

Russell pointed out in his essay “Logical Atomism”:

[...] we shall be wise to build our philosophy upon science, because

the risk of error in philosophy is pretty sure to be greater than in

science. If we could hope for certainty in philosophy the matter would

be otherwise, but so far as I can see such a hope would be chimerical

[Russell, 1924, p. 339]
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Originally published in Commentarii Academiae Scientiarum Imperialis

Petropolitanae 8 (1736), 1741, p. 128-140.

[Euler, 1750] Euler, L., Decouverte d’un Nouveau Principe de Mécanique
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